Принцип записи на накопители информации. Магнитные диски

“Внешняя память на

магнитных лентах и дисках”

Внешняяпамять............................................................................................................................................. 3

Носители на магнитных дисках.................................................................................................................... 3

Гибкие магнитные диски (ГМД).................................................................................................................. 4

Жесткий магнитный диск (ЖМД) ................................................................................................................ 5

Магнитная лента............................................................................................................................................ 6

Запись и считывание информациисмагнитногодиска......................................................................... 7

Внешняяпамять

Внешняя (долговременная) память – это место хранения данных, не используемых в данный момент в памяти компьютера. Внешние накопители имеют собственный корпус и источник питания, что экономит пространство внутри корпуса компьютера и уменьшает нагрузку на его блок питания.

Внешняя память дешевле внутренней, создаваемой обычно на основе полупроводников. Кроме того, большинство устройств внешней памяти может переноситься с одного компьютера на другой. Главный их недостаток в том, что они работают медленнее устройств внутренней памяти.

Традиционно системы хранения можно разделить на следующие три класса:

1. Быстрые системы с произвольным доступом. Это "жесткие диски" Имеют небольшое время доступа и самую высокую удельную стоимость хранения.

  1. Относительно медленные системы с последовательным доступом. Это отдельно стоящие приводы магнитных лент, библиотеки магнитных лент. Обладают наибольшим временем доступа, наибольшей емкостью и наименьшей удельной стоимостью хранения данных. Используются также в системах иерархического хранения данных.
  2. Системы с произвольным доступом, которые по емкости, стоимости, скорости занимают промежуточное положение. Это системы, построенные на базе магнитооптики, DVD и CD (R, RW) технологий. В настоящее время используются для организации небольших архивов и промежуточного хранения, в системах иерархического хранения данных.

Носители на магнитных дисках

Самым распространенным устройством внешней памяти на современных компьютерах стали накопители на магнитных дисках (НМД) или дисководы.

Дисковод – устройство для записи и чтения информации на магнитный диск.

Дисководы подразделяются на:

Гибкие магнитные диски (ГМД) или просто дискеты;

Жесткий магнитный диск (ЖМД) или по-другому винчестер.

Количество секторов на дорожке определяется типом диска и его форматом.Все секторы на одном диске имеют фиксированный размер. Персональные компьютеры могут работать с разными размерами секторов – от 128 до 1024. Стандартом является 512 байт.

Вся работа по считыванию и записи данных на дисках производится только полными секторами. Секторы дорожки, как и сами дорожки на каждой стороне диска, обозначаются присвоенными им номерами, начиная не с нуля, а с единицы (нулевой сектор отводится для целей идентификации, а не для хранения данных).

Дорожки с одинаковыми номерами на различных поверхностях диска (в общем случае пакета диска) образуют цилиндр .Доступ к данным, записанным в одном цилиндре, осуществляется без перемещения магнитных головок, т.к. в накопителе вращается сам диск – головки вдоль дорожек не перемещаются.
Интересно знать, что дискета вращается только при доступе к ней.В отличие от дискеты, жесткий диск вращается непрерывно.

Сочетание всех этих измерений дает нам емкость (размер памяти) диска .

Дискета одного и того же вида может иметь разный формат .

Процедура разметки МД на дорожки и сектора называется форматированием диска.

Гибкие магнитные диски (ГМД)

Дискета или гибкий диск – это компактное низкоскоростное малой ёмкое средство хранения и переноса информации.

Накопители на гибких магнитных дисках (НГМД) позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, не используемую постоянно на компьютере, делать архивные копии программных продуктов, содержащихся на жестком диске.

ГМД делаются из очень мягкого и гибкого материала, миларового пластика с магниточувствительным покрытием из окиси железа. Кстати, немногие знают о том, что первая (рабочая) сторона односторонней дискеты, находится на нижней стороне дискеты, а не на верхней, где расположена наклейка.

ГМД бываютдвух видов:

5,25-дюймовые;

3,5-дюймовые

В компьютерах последних лет выпуска чаще стали использовать накопители для дискет размером 3,5 дюйма (89 мм) и емкостью 0,7 и 1,44 Мбайт. Переход на их использованиебыл в первую очередь связан с бурным развитием портативных компьютеров, в которых нельзя было использовать прежние накопители из-за больших размеров последних.

  1. осевое отверстие, в которое входит дисковод;
  2. окно для считывания и записи, где головка дисковода соприкасается с дискетой.
  3. индексное отверстие, позволяющее дисководу видеть индексное отверстие самой дискеты, обеспечивающее определение начала дорожки;
  4. надрезы снятия напряжения, служащие для предохранения дискеты от перегибов;
  5. вырез защиты от записи, если закрыть этот вырез, на эту дискету нельзя производить запись.

Круглая дискета диаметром 3,5 дюйма, в отличие от 5,25 дюймовых, заключена в жесткий пластмассовый конверт, что значительно повышает её надежность и долговечность, а также создает значительные удобства при транспортировке, хранении и использовании.

Принцип гибкого диска позволяет исправить конкретный сегмент записей, не затрагивая остальной поверхности. Вот почему запись на диске может быть осуществлена частями, каждая из которых вставляется в любое подходящее место. Единственное дополнительное требование состоит в том, чтобы оглавление на диске изменялось в соответствии с изменениями, сделанными на этом диске.

Жесткий магнитный диск (ЖМД)

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время, как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты.

ЖМД - это не один диск, а пакет ЖМД, сделанных из алюминиевого сплава. Этот пакет заключен вместе с головками чтения-записи в герметичный корпус, следовательно, надежно защищен от пыли и загрязнений, встроен в дисковод и, в отличие от дискет, является несъемным. Герметизация позволяет достичь неплохих технических характеристик - большой емкости (от сотен Мбайт до нескольких Гбайт) и высокого для внешней памяти быстродействия.

Количество дисков в пакете может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитными поверхностями; первоначальная разметка (форматирование) производилась потребителем по его усмотрению, и могла быть выполнена любое количество раз. Для современных моделей разметка производится в процессе изготовления; при этом на диски записывается сервоинформация - специальные метки, необходимые для стабилизации скорости вращения, поиска секторов и слежения за положением головок на поверхностях.

Информация на внешних носителях имеет файловую структуру .

Файл – это однотипная информация, хранящаяся на внешнем носителе и объединенная общим именем.

Имя файла должно быть уникальным, т.е. не должно повторяться для разных файлов. Список файлов на диске называется каталогом или директорией . Кроме имени файла, в каталоге имеется информация о его размере, дате и времени создания. Каталог можно вывести на экран, чтобы пользователь легко мог выяснить, есть ли на данном диске нужный файл.

Связь между накопителем на жестком магнитном диске и старинным охотничьим ружьем крайне иллюзорна и сводится всего-навсего к совпадению обозначений. Дело в том, что первый загерметизированный жесткий диск, разработанный фирмой IBM в 1973 г., имел 30 цилиндров (по 30 дорожек на каждой поверхности), а каждая дорожка – 30 секторов. Вот почему первый накопитель получил обозначение 30/30, как калибр винтовки «винчестер».

Магнитная лента

Накопитель на магнитной ленте (стример)состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой “запоминается” информация.

По виду ленточные картриджи похожи на аудиокассеты, но предназначены для цифровой записи. Плотность записи в них выше, чем у аудиокассет, а ленты подвергаются специальному тестированию. Они используются при создании резервных копий для систем на жестких дисках. Цифровые аудиоленты также используются в качестве средства резервирования. При этом в кассете меньшего размера, чем аудиокассета, может храниться до миллиарда байт данных. Все типы ленточных запоминающих устройств имеют один основной недостаток – последовательный режим работы, т.е. лента должна прокручиваться до нужного элемента, что отнимает много времени. Требование экономии времени вынуждает пользователя обращаться к другому, более популярному средству хранения информации для небольших компьютеров, – гибкому диску, или дискете.

Процесс записипохож на процесс записи на виниловые пластинки - при помощи магнитной индукционной вместо специального аппарата.

На головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом.

А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик.

Данные, используемые в компьютерной технике, записываются на магнитные носители таким же образом, с той разницей, что для данных нужно меньше места на плёнке, чем для звука. Просто вся информация, записываемая на магнитный носитель в компьютерах, записывается в двоичной системе - если при чтении с носителя головка “чувствует” нахождение под собой домена(домен – частица-стрелка магнитного покрытия), то это означает, что значение данной частички данных равно “ 1” , если не “чувствует”, то значение - “ 0” . А дальше уже система компьютера преобразует данные, записанные в двоичной системе, в более понятную для человека систему.

Традиционно магнитные ленты были и остаются наименее дорогим и достаточно надежным (сохранность записи более 30 лет) носителем для организации архивов и резервного копирования данных. Однако их слабой сторонойявляется последовательный доступ к информации.

Несмотря на то, что приводов магнитных лент и картриджей разной конструкции достаточно много, базовых технологий, используемых во всех устройствах, всего две. Это линейная запись (запись с неподвижной магнитной головкой) и наклонно-строчная запись . Оба метода пришли из аналоговой магнитной записи.

Линейная система записи имеет свои характерные особенности. Чтобы обеспечить необходимую плотность записи лента должна двигаться мимо магнитной головки со скоростью порядка 160 дюймов/с (порядка 70 см/с). Чем быстрее достигается рабочая скорость движения ленты, тем меньше задержек при неизбежном старт-стопном движении ленты. Поэтому, чем более быстродействующий лентопротяжный механизм, тем больше механическая нагрузка на ленту и применение современных тонких лент AME в этом случае недопустимо.

Наклонно-строчная запись появилась позже, чем линейная. Поэтому с самого начала в основе были заложены более прогрессивные технологические решения. В результате те же объемы записываются на гораздо меньшей площади поверхности ленты. Преимущества устройств, построенных на базе наклонно-строчной записи в том, что сами устройства компактнее, картриджи меньше, используется более совершенная магнитная лента, позволяющая хранить больше данных более длительное время.

Запись и считывание информациисмагнитногодиска

Записи и считывания информации осуществляются с помощью магнитных головок плавающего типа. Они крепятся на рычагах, которые перемещаются по радиусу диска с помощью специального следящего привода.

Плотность записи – это количество элементов двоичной памяти на единицу длины носителя.

Плотность записи определяется величиной зазора между диском и магнитной головкой, а от стабильности зазора зависит качество записи (считывания). Для повышения плотности записи необходимо уменьшить зазор, однако при этом значительно повышаются требования к рабочей поверхности дисков. При малом зазоре и больших погрешностях в макро геометрии поверхности имеют место значительные колебания амплитуды сигнала воспроизведения. Для надежной работы накопителя на гибких магнитных дискахнеобходимо обеспечить шероховатость поверхности не более Ra=0,22 мкм и минимальные микрогеометрические отклонения. Торцевое биение диска при вращении с чистотой 30 об/с не должно превышать 0,3 мм, а удельная неплоскостность 0,7 мкм на длине 10 мм. Выполнение этих требований представляет значительные трудности.

Основными этапами технологического процесса изготовления магнитного диска являются получение заготовки, подготовка поверхности, терморихтование, токарная обработка, нанесения магнитного покрытия, уравновешивание, контроль.

Магнитные диски компьютера служат для длительного хранения информации (она не стирается при выключении ЭВМ). При этом в процессе работы данные могут удаляться, а другие записываться.

Выделяют жесткие и гибкие магнитные диски. Однако гибкие диски в настоящее время используются уже очень редко. Гибкие диски были особенно популярны в 80-90-х годах прошлого столетия.

Гибкие диски (дискеты), называемые иногда флоппи-дисками (Floppy Disk), представляют собой магнитные диски, заключенные в квадратные пластиковые кассеты размером 5,25 дюйма (133 мм) или 3,5 дюйма (89 мм). Гибкие диски позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, делать архивные копии информации, содержащейся на жестком диске.

Информация на магнитный диск записывается и считывается магнитными головками вдоль концентрических дорожек. При записи или чтении информации магнитный диск вращается вокруг своей оси, а головка с помощью специального механизма подводится к нужной дорожке.

Дискеты размером 3,5 дюйма имеют емкость 1,44 Мбайт. Данный вид дискет наиболее распространен в настоящее время.

В отличие от гибких дисков жесткий диск позволяет хранить большие объемы информации. Емкость жестких дисков современных компьютеров может составлять терабайты.

Первый жесткий диск был создан фирмой IBM в 1973 году. Он позволял хранить до 16 Мбайт информации. Поскольку этот диск имел 30 цилиндров, разбитых на 30 секторов, то он обозначался как 30/30. По аналогии с автоматическими винтовками, имеющими калибр 30/30, этот диск получил прозвище "винчестер".

Жесткий диск представляет собой герметичную железную коробку, внутри которой находится один или несколько магнитных дисков вместе с блоком головок чтения/записи и электродвигателем. При включении компьютера электродвигатель раскручивает магнитный диск до высокой скорости (несколько тысяч оборотов в минуту) и диск продолжает вращаться все время, пока компьютер включен. Над диском "парят" специальные магнитные головки, которые записывают и считывают информацию так же, как и на гибких дисках. Головки парят над диском вследствие его высокой скорости вращения. Если бы головки касались диска, то из-за силы трения диск быстро вышел бы из строя.

При работе с магнитными дисками используются следующие понятия.

Дорожка – концентрическая окружность на магнитном диске, которая является основой для записи информации.

Цилиндр – это совокупность магнитных дорожек, расположенных друг над другом на всех рабочих поверхностях дисков винчестера.

Сектор – участок магнитной дорожки, который является одной из основных единиц записи информации. Каждый сектор имеет свой собственный номер.

Кластер - минимальный элемент магнитного диска, которым оперирует операционная система при работе с дисками. Каждый кластер состоит из нескольких секторов.

Магнитные диски компьютера служат для длительного хранения информации (она не стирается при выключении ЭВМ). При этом в процессе работы данные могут удаляться, а другие записываться.

Выделяют жесткие и гибкие магнитные диски. Однако гибкие диски в настоящее время используются уже очень редко. Гибкие диски были особенно популярны в 80-90-х годах прошлого столетия.

Гибкие диски (дискеты), называемые иногда флоппи-дисками (Floppy Disk), представляют собой магнитные диски, заключенные в квадратные пластиковые кассеты размером 5,25 дюйма (133 мм) или 3,5 дюйма (89 мм). Гибкие диски позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, делать архивные копии информации, содержащейся на жестком диске.

Информация на магнитный диск записывается и считывается магнитными головками вдоль концентрических дорожек. При записи или чтении информации магнитный диск вращается вокруг своей оси, а головка с помощью специального механизма подводится к нужной дорожке.

Дискеты размером 3,5 дюйма имеют емкость 1,44 Мбайт. Данный вид дискет наиболее распространен в настоящее время.

В отличие от гибких дисков жесткий диск позволяет хранить большие объемы информации. Емкость жестких дисков современных компьютеров может составлять терабайты.

Первый жесткий диск был создан фирмой IBM в 1973 году. Он позволял хранить до 16 Мбайт информации. Поскольку этот диск имел 30 цилиндров, разбитых на 30 секторов, то он обозначался как 30/30. По аналогии с автоматическими винтовками, имеющими калибр 30/30, этот диск получил прозвище "винчестер".

Жесткий диск представляет собой герметичную железную коробку, внутри которой находится один или несколько магнитных дисков вместе с блоком головок чтения/записи и электродвигателем. При включении компьютера электродвигатель раскручивает магнитный диск до высокой скорости (несколько тысяч оборотов в минуту) и диск продолжает вращаться все время, пока компьютер включен. Над диском "парят" специальные магнитные головки, которые записывают и считывают информацию так же, как и на гибких дисках. Головки парят над диском вследствие его высокой скорости вращения. Если бы головки касались диска, то из-за силы трения диск быстро вышел бы из строя.

При работе с магнитными дисками используются следующие понятия.

Дорожка – концентрическая окружность на магнитном диске, которая является основой для записи информации.

Цилиндр – это совокупность магнитных дорожек, расположенных друг над другом на всех рабочих поверхностях дисков винчестера.

Сектор – участок магнитной дорожки, который является одной из основных единиц записи информации. Каждый сектор имеет свой собственный номер.



Кластер - минимальный элемент магнитного диска, которым оперирует операционная система при работе с дисками. Каждый кластер состоит из нескольких секторов.

Любой магнитный диск имеет логическую структуру, которая включает в себя следующие элементы:

  • загрузочный сектор;
  • таблицы размещения файлов;
  • область данных.

Загрузочный сектор (Boot Record) занимает сектор с номером 0. В нем содержится небольшая программа IPL2 (Initial Program Loading 2), с помощью которой компьютер определяет возможность загрузить операционную систему с данного диска.

Особенностью винчестера является наличие помимо загрузочного сектора еще одной области - главного загрузочного сектора (Master Boot Record). Дело в том, что единый жесткий диск может быть разбит на несколько логических дисков. Для главного загрузочного сектора на жестком диске всегда выделяется физический сектор 1. Этот сектор содержит программу IPL1 (Initial Program Loading 1), которая при своем выполнении определяет загрузочный диск.

Таблица размещения файлов используется для хранения сведений о размещении файлов на диске. Для магнитных дисков обычно используются две копии таблиц, которые следует одна за другой, и содержимое их полностью совпадает. Это делается на тот случай, если на диске произошли какие либо сбои, то диск всегда можно "отремонтировать", используя вторую копию таблицы. Если будут испорчены обе копии, то вся информация на диске будет потеряна.

Область данных (Data Area) занимает основную часть дискового пространства и служит непосредственно для хранения данных.

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL-метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Для этого метода (рис. 14.2), если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается «0 », а предыдущий бит был «1 », то синхросигнал также не записывается, как и бит данных. Но если перед «0 » стоит бит «0 », то синхросигнал записывается.

В настоящее время существуют 3 вида записи:

Метод параллельной записи

На данный момент это самая распространённая технология записи информации на НЖМД. Биты информации записываются с помощью маленькой головки, которая проходя над поверхностью вращающегося диска намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности. На сегодняшний день, домены становятся настолько малы, что остро встаёт вопрос о их стабильности. Дальнейшее развитие этой технологии под вопросом, многие считают этот метод исчерпавшим себя. Плотность записи, при использовании этого метода, на данный момент равна 150 Гбит/дюйм² (23Гбит/см²).

Метод перпендикулярной записи

Для того чтобы решить проблему с дальнейшим увеличением плотности, многие производители рассматривают технологию, при которой биты информации сохранялись бы в вертикальных доменах. Это позволит использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у экспериментального прототипа - 200 Гбит/дюйм² (31 Гбит/см²), в дальнейшем планируется довести плотность до 400-500 Гбит/дюйм² (60-75 Гбит/см²).

Метод тепловой магнитной записи

Метод тепловой магнитной записи (англ. Heat assisted magnetic recording - HAMR) на данный момент активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». Именно этот метод собираются использовать компании Seagate и IBM для достижения плотности в 4 Тбит на кв. дюйм (620 Гбит на кв. см). Это позволит изготовить 3,5-дюймовый винчестер объемом 25 Тб. В качестве максимальной отметки плотности пока названо значение 100 Тбит на кв. дюйм (около 15 Тб на кв. см), что соответствует 0,65-Пб (петабайт) объема в форм-факторе 3,5 дюйма.

Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Конкретный формат данных определяется внутренней программной конфигурацией ПЭВМ и техническими характеристиками адаптера накопителя. Структура формата (рис. 14.3) подобна структуре, применяемой в НГМД.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В отличие от НГМД в НЖМД в идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число, с помощью которого осуществляется правильность считывания идентификатора. Байт флага содержит флаг - указатель состояния дорожки (основная или запасная, исправная или дефектная).

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты в НЖМД предназначены не только для определения, но и для коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды; использование конкретных кодов зависит от схемной реализации адаптера.

Перед использованием НЖМД производится его начальное форматирование - процедура, выполняемая под управлением специальной программы, при работе которой на дисковый пакет записывается служебная информация и проверяется пригодность полей данных.

В последнее время компании используют адаптивное форматирование . Его суть заключается в том, что каждый экземпляр накопителя индивидуально настраивается на заводе таким образом, чтобы обеспечить лучшую производительность и надежность. Для этого каждая пара «головка-поверхность пластины» собранного диска тестируется на определение характеристик быстродействия, и затем каждая сторона магнитной пластины индивидуально форматируется (размечается на дорожки и сектора) так, чтобы обеспечить наилучшие характеристики при работе именно с данной головкой. В результате, линейная плотность записи на каждой стороне каждой пластины может не совпадать с соседними

Пять различных интервалов в НЖМД используются для синхронизации электронных процессов чтения-записи и управления работы электромеханических узлов накопителя.

В результате начального форматирования определяется расположение секторов, и устанавливаются их логические номера. Поскольку скорость вращения диска очень большая, для обеспечения минимального числа оборотов диска при обращении к последовательным секторам, секторы с последовательными номерами размещаются через N физических секторов друг от друга (рис. 14.4).

Кратность расположения секторов задается при форматировании диска. Коэффициенты чередования бывают 6:1, 3:1, и 1:1. Новейшие модели НЖМД используют коэффициенты 1:1, а их контроллеры считывают с диска за одно его обращение информацию с целой дорожки и затем хранят ее в буферной памяти. При запросе из буферной памяти передается информация уже из требуемых секторов.

Каждая дорожка диска разделяется на одинаковое число секторов, поэтому сектора на дорожках, которые находятся ближе к нулевой дорожке, имеют меньший размер. Для записи таких секторов

используются магнитные поля большей интенсивности (компенсация записи ). Число поверхностей диска (головок), число цилиндров (дорожек) и точка, с которой начинается компенсация записи, являются параметрами для настройки контроллера НЖМД.

Среднее время доступа к информации на НЖМД составляет

t ср =t n +0,5/F+t обм, (14.1)

где t n - среднее время позиционирования; F - скорость вращения диска; t обм - время обмена. Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

В общем случае под накопителем на магнитных дисках понимают устройство, обеспечивающее запись и считывание данных с вращающихся дисков.

Магнитный диск – носитель информации в форме круглой пластины (диска), поверхность которой покрыта магнитным материалом.

Подложка магнитного диска может быть жесткой (жесткий магнитный диск), изготовленный из алюминиевого сплава, или гибкой (гибкий магнитный диск), изготовленный из полиэфира. В зависимости от вида исползуемого диска накопители на магнитных дисках подразделяются на накопители на гибких дисках (НГМД FloppyDiskDrive - FDD) и накопители на жестких магнитных дисках (НЖМД HardDiskDrivt – HDD).

Принцип записи цифровой информации на магнитный диск заключается в следующем (рис. 5.26).Дисковод вращает диск под магнитной головкой, которая может двигаться по радиусу диска равномерными шагами. При этом каждое ее положение создает на диске кольцевой путь – дорожку, количество дорожек определяется числом различных положений головки. Информация записывается на диске вдоль дорожки путем подачи на головку тока записи, который создает магнитный поток, проходящий через зазор головки и магнитный слой диска. Измнением направления сигнала в обмотке головки изменяют полярность намагничивания. Считывание информации происходит за счет индуцирования тока в обмотке головки при перемещении под головкой намагниченных участков дорожки.

Гибкий магнитный диск, состоящий из круглой полимерной подложки, покрытой с обеих сторон тонким слоем магнитного материала и помещенной в специальную пластиковую упаковку, называется дискетой. Дискеты широко использовались для хранения данных и переноса их между компьютерами, оснащенными НГМД.

Рис. 5.26. Магнитная запись цифровой информации а), НГМД б) и НЖМД в)

Конструктивно современный НГМД состоит из четырех основных элементов:

Рабочий двигатель, обеспечивающий постоянную скорость вращения дискеты (в современных дисководах – 300 об./мин);

Рабочие головки, предназначенные для записи и чтения данных. Дисковод оснащается двумя комбинированными головками (для чтения и записи каждая), которые располагаются над рабочими поверхностями дискеты – одна головка предназначена для верхней, а другая – для нижней поверхности дискеты;

Шаговые двигатели, предназначенные для движения и позиционирования головок;

Управляющая электроника, отвечающая за передачу и преобразование информации, которую считывают или записывают головки.

Дискета устанавливается в дисковод, автоматически в нем фиксируется, после чего механизм накопителя раскручивается до номинальной частоы вращения. В накопителе вращается дискета, магнитные головки остаются неподвижными. При этом дискета вращается только при обращении к ней. Чтобы не нарушалась постоянная скорость вращения привода,дисковод всегда должен работать только в горизонтальном или вертикальном положении. Процессор взаимодействует сНГМД через специальный контроллер гибких дисков.

Необходимое условие использование дискеты для записи и чтения информации – ее форматирование, т.е. разбиение (разметка)на определенные участки, по номерам которых можно определить любую запись на диске.

Для форматирования дисков операционные системы используют специальные команды: для DOS – это командаFormat. Дискета разбивается на дорожки (треки), а дорожки на сектора (рис. 5.26). сектор представляет собой минимальную физическую единицу хранения информации на диске. Его размер для DOS, как правило, равен 512 байт. Дорожки нумеруются начиная от края к центру диска, при этом каждая дорожка имеет одно и то же количествосекторов. Таким образом, на дорожках, расположенных ближе к центру дискаинформация записывается более плотно.

Наибольшее распространение получили 3,5 – дюймовые (89 мм) дискеты высокой плотности DS/HD (double-side/high-density – две стороны, высокая плотность). Для них число дорожек на одной стороне равно 80, количество секторов на дорожках – 18, соответственно, емкость диска 80х18х2х512=1474560 байт или 1474560/1048576=1,4 Мбайт.

В накопителе на жестких магнитных дисках носители информации представляют собой круглые жесткие пластины (называемые также платтерами), обе поверхности которых покрыты слоем магнитного материала. Первая подобная система памяти была создана фирмой IBM в 1956 г. и называлась RAMAS 305 (Random Access Methodof Accounting and Control). Данное запоминающее устройство состояло из 50 алюминиевых дисков (покрытых магнитным слоем) диаметром около 60 см и толщиной2,5 см, которые были насажены на ось мощного электромотора. На поверхности каждого диска располагалось 100 концентрических дорожек, на каждой из которых можно было запомнить 500 алфавитно-цифровых символов, закодированных в исполнявшемся тогда семибитном коде. RAMAC 305 состоял из двух огромных блоков, занимающих площадь 3х3,5 м, и мог хранить 5 млн символов.

Современные НЖМД строятся по винчестерской технологии и называются винчестерами. Данная технология впервые была применена при создании накопителей на жестких дисках (модели IBM3340) на предприятии IBM в английском городе Винчестер в 1973 г. В винчестерах головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметический закрытый корпус. Головка, используемая в винчестере, имеет небольшие размеры и массу и размещается на держателе специальной аэродинамической формы. При вращении диска над ним образуется тонкий воздушный слой, обеспечивающий «воздушную подушку» для зависания головки над поверхностью диска на расстоянии единиц микрометров. При этом масса головки и прижимающее усилие к поверхности диска настолько малы, что, даже если в процессе работы устойства головка опускается на зону данных, вероятностьь их повреждения очень низкая. Существует также версия происхождения названия «винчестер», основанная на том, что первые массовые модели НЖМД содержали два магнитных диска по 30 Мбайт каждый и маркировались цифрами «30/30», подобно калибру старинного охотничьего ружья винчестер.

Винчестер (рис. 5.27) состоит из нескольких одинаковых дисков, расположенных друг над другом. Для каждого диска в винчестере имеется пара рабочих головок, которые приводятся в движение и позиционируются шаговым двигателем. Все головки расположены «гребнем». Позиционирование одной головки обязательно вызывает аналогичное перемещение и всех остальных, поэтому, когда речь идет о разбиении винчестера, обычно говорят о цилиндрах (cylinder), а не о дорожках. Цилиндр – это совокупность всех совпадающих друг с другом дорожек по вертикали, по всем рабочим поверхностям.

Рис. 5.27. Винчестер

На 2006 год оптимальное соотношение цены и ёмкости обеспечивают винчестеры примерно на 300 ГБ, а максимальная доступная ёмкость - около 750ГБ, в настоящее время несколько Терабайт.

Магнитные диски состоят из основы, сделанной обычно из алюминия, реже из стекла или керамики и магнитного покрытия, в виде тонкой плёнки магнитотвёрдого материала (ферромагнетика), который служит собственно носителем информации. Магнитные диски собраны в пакет, находящийся на оси шпиндельного электродвигателя со стабильной скоростью вращения. Стабилизация вращения производится контроллером по сервометкам. (Ранее использовался отдельный датчик положения дисков). Обычно дисков в пакете не более трёх, запись может производиться как на одну, так и на обе стороны каждого диска, таким образом диск обычно содержит от 1 до 6 головок.

Блок магнитных головок перемещается вдоль поверхности диска от края к центру посредством сервопривода. На первых винчестерах сервопривод производился шаговым двигателем. Впоследствии стала применяться электромагнитная катушка (англ. сoil), подобная катушке магнито-электрического стрелочного прибора. Для управления головками в винчестере хранятся так называемые адаптивы - индивидуальные для каждого винчестера данные о физических характеристиках сервопривода головок - необходимые амплитуды и времена сигналов управления электромагнитом. Адаптивы обеспечивают быстрое и почти безошибочное позиционирование головки и уверенное удержание её на треке.

Сама головка - миниатюрная электромагнитная система, обеспечивающая локальное намагничивание поверхности диска и локальное измерение его намагниченности. Первые электромагнитные головки считывали информацию через наведённую ЭДС на катушке. Позднее появились магниторезистивные головки, использующие для считывания специальный магниточувствительный материал.

В выключенном положении головки лежат на дисках в специальной зоне парковки. Во избежание повреждений при транспортировке, головки в этом положении заблокированы, и не могут перемещаться до тех пор, пока диски не крутятся. При работе головки парят над поверхностью вращающихся дисков на расстоянии порядка от десятых долей до единиц микрометров. Таким образом, поверхность дисков не изнашивается (как это происходит у дискет).

Внутри гермоблока вместе на блоке магнитных головок или рядом с ним расположен коммутатор, обеспечивающий переключение активных головок и предварительное усиление сигнала магнитного датчика. Если у жёсткого диска одна рабочая поверхность, то коммутатор выполняет только функции усилителя.

Немаловажное значение имеют скоростные характеристики жёстких дисков:

  • Скорость вращения шпинделя (англ. rotational speed , spindle speed ) обычно измеряется в оборотах в минуту (об/мин, rpm). Она не даёт прямой информации о реальной скорости обмена, но позволяет различать более скоростные от менее. Стандартные скорости вращения: 4800, 5600, 7200, 9600, 10 000, 15 000 об/мин. Медленные обычно используются на ноутбуках и других мобильных устройствах, самые скоростные - в серверах.
  • Время доступа - количество времени, необходимое винчестеру от момента приёма команды до начала выдачи данных по интерфейсу. Обычно указывается среднее и максимальное время доступа.
  • Время позиционирования головок (англ. seek time ) - время за которое головки перемещаются и устанавливаются на трек с другого трека. Различают время позиционирования на соседний трек (track-to-track), среднее (average), максимальное (maximum).
  • Скорость передачи данных или пропускная способность - определяет производительность диска при передаче последовательно больших объёмов данных. Эта величина показывает установившуюся скорость передачи, когда головки диска уже на нужном треке и секторе.
  • Внутренняя скорость передачи данных - скорость передачи данных между контроллером и магнитными головками.
  • Внешняя скорость передачи данных - скорость передачи данных по внешнему интерфейсу.

Общая емкость пакета дисков определяется произведением количества цилиндров, количества магнитных головок, количества секторов на дорожке и размера сектора в байтах (как правило, 512 байт). Например, винчестер емкостью 1,2 Гбайт содержит 2631 цилиндра с 16 магнитными дорожками на каждом цилиндре и с 63 секторами на дорожке.

Кроме объема, основными характеристиками производительности накопителя являются:

- время доступа – интервал между моментом, когда процессор запрашивает с диска данные, и моментом их выдачи. Время доступа зависит от расположения головок и пластин под ними, поэтому для него даются средние значения, составляющие в настоящее время единицы миллисекунд;

- частота вращения – частота, с которой пластины диска вращаются относительно магнитных головок (измеряется в об./мин).

Информация на магнитных дисках обычно хранится в виде файлов.

Файл (англ.file – папка) – именованная совокупность любых данных, размещенная на внешнем запоминающем устройстве и хранимая, пересылаемая и обрабатываемая как единое целое. Файл может содержать программу, числовые данные, текст, закодированное изображение идр.

Данные на магнитном диске, как указано выше, хранятся на дорожках, разделенных на секторы. При этом операционные системы для сохранения файла выделяют дисковое пространство кластерами, представляющими собой один или несколько смежных секторов.

Минимальная единица размещения информации на диске, состоящая из одного или несколько секторов дорожки, называется кластером .

Если для записи файла требуется несколько кластеров и при этом требуемого количества смежных кластеров (расположенных один за другим) на диске кластеры, и файл будет фрагментированным. Фрагментация снижает скорость считывания файлов, так как в этом случае увеличивается количество перемещений головкой при поиске и считывании требуемых кластеров. Потенциальную возможность фрагментации можно снизить, увеличив размер кластера, однако при этом повышается вероятность нерациональных потерь дисковой памяти, обусловленных тем, что кластеры будут содержать неиспользованное дисковое пространство.

За организацию хранения и доступа к информации на магнитном носителе, как и на любом другом носителе информации, отвечает файловая система, являющаяся важной составной частью любой операционной системы. Понятие «файловая система» включает совокупность всех файлов на диске, наборы служебных структур данных, используемых для управления файлами (каталоги файлов, дескрипторы файлов, таблицы распределения свободного и занятого пространства на диске и т.п.), а также комплекс системных программных средств, предназначенных для реализации операций с файлами: поиска, чтения записи, создания, уничтожения, установки атрибутов и уровней доступа и т.п.

Для того чтобы файловая система могла использовать жесткий диск или дискету, их необходимо отформатировать. Форматирование жесткого диска включает три этапа: низкоуровневое форматирование диска; создание главных (основных) разделов или логических дисков на расширенном разделе; логическое форматирование главных разделов или логических дисков. Процедура форматирования дискет включает два совмещенных этапа – низкоуровневое и логическое форматирование – и осуществляется за один шаг.

Низкоуровневое форматирование диска выполняется, как правило, на заводе изготовителе. При этом определяются размер сектора, количество секторов на дорожку, на диск также записывается информация о коррекции ошибок и идентификации секторов (для каждого сектора).

Жесткий диск IBMсовместимых компьютеров может содержать, как правило, до четырех основных разделов, каждый из которых может быть использован конкретной файловой системой. Кроме того на диске может быть создан один так называемы расширенный (extended) раздел, который в свою очередь может разбиваться на несколько логических дисков, также используемых конкретной файловой системой. Таким образом, на диске может быть до трех главных разделов и один расширенный раздел, содержащий один или несколько логическихдисков. При этом в качестве системного раздела (раздела, содержащего зависимые от аппаратной платформы файлы, необходимые для загрузки и инициализации операционной системы) можно использовать только главный раздел. Главные разделы, а также каждый из логических дисков обозначаются однойиз букв английского алфавита и двоеточием. Буквой С: обозначается первый главный раздел. Следующий раздел получает букву D:, потом Е: и т.д. (Буквой А: принято обозначать дисковод для гибких дисков, буква В: зарезервирована на тот случай, если в компьютере не один, а два дисковода гибких дисков). При создании первого раздела на диске (основного или расширенного) в первом физическом секторе жесткого диска создается главная загрузочная запись (masterbootrecord – MBR) и таблица разделов (partitiontable), содержащая информацию о каждом из имеющихся на диске разделов. Главная загрузочная запись используется программой начальной загрузки BIOS (RomBootstraproutine), которая при загрузке с жесткого диска считывает и загружает в память первый физический сектор на активном разделе диска, называемый загрузочным сектором (BootSector)

В процессе логического форматирования главных разделов или логических дисков на диск записывается информация, необходимая для работы конкретной файловой системы, в том числе и загрузочный сектор раздела(PartitionBootSector).

Современные операционные системы могут работать одновременно с несколькими файловыми системами. Рассмотрим в качестве примера основные особенности наиболее распространенных файловых систем, используемых операционными системами семейства Windows (Windows 98, NT, XP и т.д.)

На рис 5.28. представлена схема раздела файловой системы FAT. (Свое название FAT получила от одноименной таблицы размещения файлов – FileAllocationTable).

Рис. 5.28. Структура раздела FAT

Корневой каталог содержит список имен файлов с указанием даты, времени их создания и размеров. В качестве дополнительной информации каталог включает атрибуты файла: только для чтения, системный, скрытый или архивный. В каталоге содержится также начальная позиция файла, т.е. номер первого кластера на диске, содержащего данные требуемого файла.

Таблица размещения файлов (FAT) – это список, содержащий информацию о расположении данных файла на диске. Для каждого кластера отводится один элемент списка, содержащий, помимо информации о расположении данных файла, информацию о состоянии кластера: занят, свободен, испорчен.

Когда системе нужен какой-то файл, она находит его стартовый кластер по имени файла в каталоге их рамещения и затем просматривает FAT в поисках элемента списка, соответствующего начальному кластеру. Если весь файл помещен в одном кластере, то элемент FAT содержит индикатор конца файла. Если файл занимает несколько кластеров, элемент FAT указывает номер следующего кластера, в котором должно находиться продолжение файла, либо признак его окончания. В сущности, FAT содержит цепочки ссылок, следуя по которым можно найти размещение каждого файла на диске. Для предотвращения возможной потери информации таблица размещения файлов дублируется на случай повреждения первой FAT.

Размер таблицы FAT при фиксированом объеме диска зависит от размера кластера, чем меньше размер кластера, тем больше их количество и, следовательно, больше размер таблицы FAT. Таким образом, использование кластеров, размер которых больше одного сектора, помимо снижения фрагментации, уменьшает объем дискового пространства, необходимого для хранения FAT.

Первоначально для записи в таблице размещения файлов адреса любого файла FAT использовала 12 бит и поддерживала разделы объемом до 16 Мбайт. 12 разрядная FAT и сейчас используется для форматирования дисков, размер которых не превышает 16 Мбайт. Для поддержки дисков размером больше 32 Мбайт разрядность FAT была повышена до 16 бит – FAT 16. С помощью 16 битов можно выразить 2 16 (65536) разных значений. Это значит, что файлам на жестком диске не может быть предоставлено более чем 65 536 кластеров.

Современные жесткие диски имеют очень большие объемы, и при таком количестве адресов размеры кластера будут значительными. Так, если размер диска составляет 2 Гбайт (максимальный размер, поддерживаемый FAT 16), то при использовании FAT 16 на каждый кластер будет приходиться 32 кбайт (2 Гбайт разделить на 65536 получим 32 кбайт). При этом для записи на диск файла размером 35 кбайт будет отведено два кластера – 64 кбайт, т.е. 29 кбайт памяти диска будут просто потеряны. Связь между размером жесткого диска и размером кластера для FAT 16 представлена в таблице 5.2.

Таким образом, чем больше жесткий диск, тем больше места на нем тратится впустую из-за несовершества системы адресации файлов. Один из способов борьбы с нерациональными потерями это разбиение жесткого диска на несколько разделов, или логических дисков, каждый из которых имеетсобственную таблицу размещения файлов. В итоге потери, обусловленные большими размерами кластеров, становятся меньше.

Таблица 5.2

Связь между размером жесткого диска и размером кластера для FAT 16

Объем диска Количество секторов на кластер Размер кластера
Менее 32 Мбайт 512 байт
32 Мбайт…64 Мбайт 1 кбайт
64 Мбайт…128 Мбайт 2 кбайт
128 Мбайт…256 Мбайт 4 кбайт
256 Мбайт…511 Мбайт 8 кбайт
512 Мбайт…1023 Мбайт 16 кбайт
1024 Мбайт…2047 Мбайт 32 кбайт

Начиная с файловой системы Windows 95 OSR2 при записи адреса файла на жестком диске используется не два, а четыре байта, или 32 бита (FAT32). С помощью 32 бит можно выразить 2 32 (4 294 967 296) разных значений, т.е. файлам на жестком диске может быть предоставлено 2 32 кластеров. В этом случае размеры отдельных кластеров могут быть значительно меньше, и нерациональные потери дисковой памяти уменьшаются (табл. 5.3.).

Таблица 5.3

Размеры кластеров для FAT 32

Файловая система NTFS (New Technology File System), специально разработана для Windows NT, как и FAT, использует кластеры в качестве фундаментальной единицы дискового пространства. При этом для записи адреса файла может использоваться 8 байт (64 бита), и соответственно, файлам на жестком диске может быть предоставлено 2 64 кластеров. Однако на практике используются таблицы разделов размерами до 2 32 секторов, т.е. работая с файловой системой NTFS, можно создать файл, максимальный размер которого составляет 2 32 кластеров (как и при использовании FAT 32).

Структура раздела файловой системы NTFS представлена на рис. 5.29.

Рис. 5.29. Структура разделов NTFS

Форматирование раздела для использования файловой системы NTFS приводит к созданию нескольких системных файлов и главной таблицы файлов – файла MFT (MasterFileTable), содержащего информацию о всех файлах и папках, имеющихся в разделе NTFS. Первые 16 записей MFT зарезервированы для служебных файлов, называемых также метафайлами, причем первая запись таблицы описывает непосредственно саму главную файловую таблицу – сам MFT, также являющийся метафайлом. За ней следует запись зеркальной копии MFT, гарантирующая доступ к зеркальному файлу MFT в случае, если первая запись MFT будет разрушена. Местоположение сегментов данных MFT и зеркального файла MFT хранится в загрузочном секторе раздела, который также дублируется. С третьей по шестнадцатую записи MFT содержат описания других метафайлов, каждый из которых отвечаетза какой-либо аспект работы системы. Семнадцатая и последующие записи главной файловой таблицы используются собственно файлами и каталогами на томе.

Отличительной особенностью файловой системы NTFS является значительное расширение возможностей по управлению доступом к отдельным файлам и каталогам, большое число атрибутов файлов (в том числе атрибутов защищенности), позволяющих обеспечить защиту данных от несанкционированного доступа. При использовании FAT возможность установки прав доступа к отдельным каталогам и файлам отсутствует. Единственной мерой защиты служат права доступа к разделяемым ресурсам, которые устанавливаются на весь разделяемый ресурс, действуют по отношению ко всем имеющимся на нем файлам и папкам и имеют силу только при доступе через сеть.