Включающее себя ряд функций указанных выше устройств. Общие сведения о сетевых технологиях

Для согласования работы устройств сети от разных производителей, обеспечения взаимодействия сетей, которые используют различную среду распространения сигнала создана эталонная модель взаимодействия открытых систем (ВОС). Эталонная модель построена по иерархическому принципу. Каждый уровень обеспечивает сервис вышестоящему уровню и пользуется услугами нижестоящего уровня.

Обработка данных начинается с прикладного уровня. После этого, данные проходят через все уровни эталонной модели, и через физический уровень отправляются в канал связи. На приеме происходит обратная обработка данных.

В эталонной модели OSI вводятся два понятия: протокол и интерфейс .

Протокол – это набор правил, на основе которых взаимодействуют уровни различных открытых систем.

Интерфейс – это совокупность средств и методов взаимодействия между элементами открытой системы.

Протокол определяет правила взаимодействия модулей одного уровня в разных узлах, а интерфейс – модулей соседних уровней в одном узле.

Всего существует семь уровней эталонной модели OSI. Стоит отметить, что в реальных стеках используется меньше уровней. Например, в популярном TCP/IP используется всего четыре уровня. Почему так? Объясним чуть позже. А сейчас рассмотрим каждый из семи уровней в отдельности.

Уровни модели OSI:

  • Физический уровень. Определяет вид среды передачи данных, физические и электрические характеристики интерфейсов, вид сигнала. Этот уровень имеет дело с битами информации. Примеры протоколов физического уровня: Ethernet, ISDN, Wi-Fi.
  • Канальный уровень. Отвечает за доступ к среде передачи, исправление ошибок, надежную передачу данных. На приеме полученные с физического уровня данные упаковываются в кадры после чего проверяется их целостность. Если ошибок нет, то данные передаются на сетевой уровень. Если ошибки есть, то кадр отбрасывается и формируется запрос на повторную передачу. Канальный уровень подразделяется на два подуровня: MAC (Media Access Control) и LLC (Locical Link Control). MAC регулирует доступ к разделяемой физической среде. LLC обеспечивает обслуживание сетевого уровня. На канальном уровне работают коммутаторы. Примеры протоколов: Ethernet, PPP.
  • Сетевой уровень. Его основными задачами являются маршрутизация – определение оптимального пути передачи данных, логическая адресация узлов. Кроме того, на этот уровень могут быть возложены задачи по поиску неполадок в сети (протокол ICMP). Сетевой уровень работает с пакетами. Примеры протоколов: IP, ICMP, IGMP, BGP, OSPF).
  • Транспортный уровень. Предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. Выполняет сквозной контроль передачи данных от отправителя до получателя. Примеры протоколов: TCP, UDP.
  • Сеансовый уровень. Управляет созданием/поддержанием/завершением сеанса связи. Примеры протоколов: L2TP, RTCP.
  • Представительский уровень. Осуществляет преобразование данных в нужную форму, шифрование/кодирование, сжатие.
  • Прикладной уровень. Осуществляет взаимодействие между пользователем и сетью. Взаимодействует с приложениями на стороне клиента. Примеры протоколов: HTTP, FTP, Telnet, SSH, SNMP.

После знакомства со эталонной моделью, рассмотрим стек протоколов TCP/IP.

В модели TCP/IP определено четыре уровня. Как видно из рисунка выше – один уровень TCP/IP может соответствовать нескольким уровням модели OSI.

Уровни модели TCP/IP:

  • Уровень сетевых интерфейсов. Соответствует двум нижним уровням модели OSI: канальному и физическому. Исходя из этого, понятно, что данный уровень определяет характеристики среды передачи (витая пара, оптическое волокно, радиоэфир), вид сигнала, способ кодирования, доступ к среде передачи, исправление ошибок, физическую адресацию (MAC-адреса). В модели TCP/IP на этом уровне работает протокол Ethrnet и его производные (Fast Ethernet, Gigabit Ethernet).
  • Уровень межсетевого взаимодействия. Соответствует сетевому уровню модели OSI. Берет на себя все его функции: маршрутизацию, логическую адресация (IP-адреса). На данном уровне работает протокол IP.
  • Транспортный уровень. Соответствует транспортному уровню модели OSI. Отвечает за доставку пакетов от источника до получателя. На данному уровне задействуется два протокола: TCP и UDP. TCP является более надежным, чем UDP за счет создания предварительного соединения, запросов на повторную передачу при возникновении ошибок. Однако, в то же время, TCP более медленный, чем UDP.
  • Прикладной уровень. Его главная задача – взаимодействие с приложениями и процессами на хостах. Примеры протоколов: HTTP, FTP, POP3, SNMP, NTP, DNS, DHCP.

Инкапсуляция – это метод упаковки пакета данных, при котором независимые друг от друга служебные заголовки пакета абстрагируются от заголовков нижестоящих уровней путем их включения в вышестоящие уровни.

Рассмотрим на конкретном примере. Пусть мы хотим попасть с компьютера на сайт. Для этого наш компьютер должен подготовить http-запрос на получение ресурсов веб-сервера, на котором хранится нужная нам страница сайта. На прикладном уровне к данным (Data) браузера добавляется HTTP-заголовок. Далее на транспортном уровне к нашему пакету прибавляется TCP-заголовок, содержащий номера портов отправителя и получателя (80 порт – для HTTP). На сетевом уровне формируется IP-заголовок, содержащий IP-адреса отправителя и получателя. Непосредственно перед передачей, на канальном уровне добавляется Ethrnet-заголовок, который содержит физические (MAC-адреса) отправителя и получателя. После всех этих процедур пакет в виде битов информации передается по сети. На приеме происходит обратная процедура. Web-сервер на каждом уровне будет проверять соответствующий заголовок. Если проверка прошла удачно, то заголовок отбрасывается и пакет переходит на верхний уровень. В противном случае весь пакет отбрасывается.


Сетевая модель OSI (open systems interconnection basic reference model - базовая эталонная модель взаимодействия открытых систем, сокр. ЭМВОС ; 1978 год) - сетевая модел стека сетевых протоколов OSI/ISO (ГОСТ Р ИСО/МЭК 7498-1-99).

Общая характеристика модели OSI


В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.

К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому её называют справочной моделью.В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический . Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств.

Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню - прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того, чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию - заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней.

Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает своё «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники - средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно.

Уровни модели OSI

Модель OSI
Уровень (layer) ) Функции Примеры
Host
layers
7. Прикладной (application) Доступ к сетевым службам HTTP , FTP , SMTP
6. Представительский (представления) (presentation) Представление и шифрование данных ASCII , EBCDIC , JPEG
5. Сеансовый (session) Управление сеансом связи RPC , PAP
4. Транспортный (transport) Сегменты (segment)/
Дейтаграммы (datagram)
Прямая связь между конечными пунктами и надежность TCP , UDP , SCTP

layers
3. Сетевой (network) Пакеты (packet) Определение маршрута и логическая адресация IPv4 , IPv6 , IPsec , AppleTalk
2. Канальный (data link) Биты (bit)/
Кадры (frame)
Физическая адресация PPP , IEEE 802.2 , Ethernet , DSL , L2TP , ARP
1. Физический (physical) Биты (bit) Работа со средой передачи, сигналами и двоичными данными USB , витая пара, коаксиальный кабель, оптический кабель

В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем - физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

  • тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),
  • тип модуляции сигнала,
  • сигнальные уровни логических дискретных состояний (нуля и единицы).

Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже - вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

Каждому уровню с некоторой долей условности соответствует свой операнд - логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица - бит, на канальном уровне информация объединена в кадры, на сетевом - в пакеты (датаграммы), на транспортном - в сегменты. Любой фрагмент данных, логически объединённых для передачи - кадр, пакет, датаграмма - считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.

К базовым сетевым технологиям относятся физический и канальный уровни.

Прикладной уровень


Прикладной уровень (уровень приложений; application layer) - верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

  • позволяет приложениям использовать сетевые службы:
    • удалённый доступ к файлам и базам данных,
    • пересылка электронной почты;
  • отвечает за передачу служебной информации;
  • предоставляет приложениям информацию об ошибках;
  • формирует запросы к уровню представления.

Протоколы прикладного уровня: RDP, HTTP, SMTP, SNMP, POP3, FTP, XMPP, OSCAR, Modbus, SIP, TELNET и другие.

Уровень представления


Представительский уровень (уровень представления; presentation layer) обеспечивает преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или шифрование/дешифрование, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может быть мейнфрейм компании IBM, а другая - американский стандартный код обмена информацией ASCII (его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от доступа несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так что они могут передаваться по сети.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT - формат изображений, применяемый для передачи графики QuickDraw между программами.

Другим форматом представлений является тэгированный формат файлов изображений TIFF, который обычно используется для растровых изображений с высоким разрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединенной экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG.

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (Musical Instrument Digital Interface, MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и QuickTime - стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.

Протоколы уровня представления: AFP - Apple Filing Protocol, ICA - Independent Computing Architecture, LPP - Lightweight Presentation Protocol, NCP - NetWare Core Protocol, NDR - Network Data Representation, XDR - eXternal Data Representation, X.25 PAD - Packet Assembler/Disassembler Protocol.

Сеансовый уровень


Сеансовый уровень (session layer) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

Протоколы сеансового уровня: ADSP (AppleTalk Data Stream Protocol), ASP (AppleTalk Session Protocol), H.245 (Call Control Protocol for Multimedia Communication), ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS (Internet Storage Name Service), L2F (Layer 2 Forwarding Protocol), L2TP (Layer 2 Tunneling Protocol), NetBIOS (Network Basic Input Output System), PAP (Password Authentication Protocol), PPTP (Point-to-Point Tunneling Protocol), RPC (Remote Procedure Call Protocol), RTCP (Real-time Transport Control Protocol), SMPP (Short Message Peer-to-Peer), SCP (Session Control Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protoco]).

Транспортный уровень


Транспортный уровень (transport layer) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDP ограничивается контролем целостности данных в рамках одной датаграммы, и не исключает возможности потери пакета целиком, или дублирования пакетов, нарушение порядка получения пакетов данных; TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот склеивая фрагменты в один пакет.

Протоколы транспортного уровня: ATP (AppleTalk Transaction Protocol), CUDP (Cyclic UDP), DCCP (Datagram Congestion Control Protocol), FCP (Fibre Channel|Fiber Channel Protocol), IL (IL Protocol), NBF (NetBIOS Frames protocol), NCP (NetWare Core Protocol), SCTP (Stream Control Transmission Protocol), SPX (Sequenced Packet Exchange), SST (Structured Stream Transport), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Сетевой уровень


Сетевой уровень (lang-en|network layer) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2), CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security). Протоколы маршрутизации - RIP (Routing Information Protocol), OSPF (Open Shortest Path First).

Канальный уровень


Канальный уровень (data link layer) предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

Спецификация IEEE 802 разделяет этот уровень на два подуровня: MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (logical link control) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы, мосты и другие устройства. Говорят, что эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

Протоколы канального уровня: ARCnet, ATM (Asynchronous Transfer Mode), Controller Area Network (CAN), Econet, IEEE 802.3 (Ethernet), Ethernet Automatic Protection Switching (EAPS), Fiber Distributed Data Interface (FDDI), Frame Relay, High-Level Data Link Control (HDLC), IEEE 802.2 (provides LLC functions to IEEE 802 MAC layers), Link Access Procedures, D channel (LAPD), IEEE 802.11 wireless LAN, LocalTalk, Multiprotocol Label Switching (MPLS), Point-to-Point Protocol (PPP), Point-to-Point Protocol over Ethernet (PPPoE), StarLan, Token ring, Unidirectional Link Detection (UDLD), x.25]], ARP.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS, UDI.

Физический уровень


Физический уровень (physical layer) - нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Составлением таких методов занимаются разные организации, в том числе: Институт инженеров по электротехнике и электронике, Альянс электронной промышленности, Европейский институт телекоммуникационных стандартов и другие. Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

На этом уровне также работают концентраторы]], повторители сигнала и медиаконвертеры.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются:

Выпуск WordPress 5.3 улучшает и расширяет представленный в WordPress 5.0 редактор блоков новым блоком, более интуитивным взаимодействием и улучшенной доступностью. Новые функции в редакторе […]

После девяти месяцев разработки доступен мультимедиа-пакет FFmpeg 4.2, включающий набор приложений и коллекцию библиотек для операций над различными мультимедиа-форматами (запись, преобразование и […]

  • Новые функции в Linux Mint 19.2 Cinnamon

    Linux Mint 19.2 является выпуском с долгосрочной поддержкой, который будет поддерживаться до 2023 года. Он поставляется с обновленным программным обеспечением и содержит доработки и множество новых […]

  • Вышел дистрибутив Linux Mint 19.2

    Представлен релиз дистрибутива Linux Mint 19.2, второго обновления ветки Linux Mint 19.x, формируемой на пакетной базе Ubuntu 18.04 LTS и поддерживаемой до 2023 года. Дистрибутив полностью совместим […]

  • Доступны новые сервисные релизы BIND, которые содержат исправления ошибок и улучшения функций. Новые выпуски могут быть скачано со страницы загрузок на сайте разработчика: […]

    Exim — агент передачи сообщений (MTA), разработанный в Кембриджском университете для использования в системах Unix, подключенных к Интернету. Он находится в свободном доступе в соответствии с […]

    После почти двух лет разработки представлен релиз ZFS on Linux 0.8.0, реализации файловой системы ZFS, оформленной в виде модуля для ядра Linux. Работа модуля проверена с ядрами Linux c 2.6.32 по […]

    Комитет IETF (Internet Engineering Task Force), занимающийся развитием протоколов и архитектуры интернета, завершил формирование RFC для протокола ACME (Automatic Certificate Management Environment) […]

    Некоммерческий удостоверяющий центр Let’s Encrypt, контролируемый сообществом и предоставляющий сертификаты безвозмездно всем желающим, подвёл итоги прошедшего года и рассказал о планах на 2019 год. […]