В чем суть клиент серверной технологии. Технология «клиент-сервер

Почти все модели организации взаимодействия пользователя с БД построены на основе клиент-серверной технологии. Предполагается, что каждое такое приложение отличается способом распределения функций: клиентская часть отвечает за целевую обработку данных и организацию взаимодействия с пользователем, серверная часть обеспечивает хранение данных - обрабатывает запросы и посылает результаты клиенту для специальной обработки. Типовая архитектура клиент-серверной технологии представлена на рис. 4.1:

Рис. 4.1. Типовая архитектура клиент-серверной технологии

Часть функций центральных ЭВМ взяли на себя локальные компьютеры. Любое программное приложение в этом случае представляется из трех компонентов: компонент представления, реализующий интерфейс с пользователем; прикладной компонент, обеспечивающий выполнение прикладных функций; компонент доступа к информационным ресурсам (менеджер ресурсов), выполняющий накопление информации и управление данными.

На основе распределения этих компонентов между рабочей станцией и сервером сети выделяют модели архитектуры «клиент-сервер»:

· модель доступа к удаленным данным (рис. 4.2). На сервере расположены только данные:

Рис. 4.2. Модель доступа к удаленным данным

Данная модель характеризуется невысокой производительностью, так как вся информация обрабатывается на рабочих станциях; кроме того, поддерживается низкая скорость обмена при передаче больших объемов информации с сервера на рабочие станции;

· модель сервера управления данными (рис. 4.3):

Рис. 4.3. Модель сервера управления данными

Особенности данной модели: уменьшение объемов информации, передаваемых по сети, так как выборка необходимых информационных элементов осуществляется на сервере, а не на рабочих станциях; унификация и широкий выбор средств создания приложений; отсутствие четкого разграничения между компонентом представления и прикладным компонентом, что затрудняет совершенствование вычислительной системы. Целесообразно использовать в случае обработки умеренных объемов информации, при этом сложность прикладного компонента должна быть невысокой,

· модель комплексного сервера (рис. 4.4):

Рис. 4.4. Модель комплексного сервера

Преимущества модели: высокая производительность, централизованное администрирование, экономия ресурсов сети. Такой сервер оптимален для крупных сетей, ориентированных на обработку больших и увеличивающихся со временем объемов информации;

· трехзвенная архитектура «клиент-сервер» (рис. 4.5). Используется при усложнении и увеличении ресурсоемкости прикладного компонента.

Рис. 4.5. Трехзвенная архитектура

В сервере приложений могут быть реализованы несколько прикладных функций, каждая из которых оформляется как отдельная служба, предоставляющая некоторые услуги всем программам. Таких серверов может быть несколько, каждый из них ориентирован на предоставление некоторого набора услуг. Данная архитектура базируется на дальнейшей специализации компонентов архитектуры: клиент занимается только организацией интерфейса с пользователем, сервер БД выполняет только стандартную обработку данных, для реализации логики обработки данных архитектура предусматривает отдельный слой - слой бизнес-логики, он может представлять собой либо выделенный сервер (сервер приложений), либо размещаться на клиенте в качестве библиотеки.

В рамках архитектуры «клиент-сервер» существуют два основных понятия:

· «тонкий» клиент. Используется мощный сервер БД и библиотека хранимых процедур, позволяющих производить вычисления, реализующие основную логику обработки данных, непосредственно на сервере. Клиентское приложение, соответственно, предъявляет невысокие требования к аппаратному обеспечению рабочей станции;

· «толстый» клиент реализует основную логику обработки на клиенте, а сервер представляет собой в чистом виде сервер БД, обеспечивающий исполнение только стандартных запросов на манипуляцию с данными (как правило - чтение, запись, модификацию данных в таблицах реляционной БД).

Сетевые ИТ

Электронная почта . Возникшая самой первой, эта форма обмена электронными сообщениями (e-mail) продемонстрировала саму возможность практически мгновенного общения посредством компьютерных сетей. Архитектурно предназначенная для обмена сообщениями между двумя абонентами, она позволила обмениваться информацией группам людей. Такой модификацией стали группы или списки рассылки. С помощью ПО для работы с электронной почтой можно создавать электронные сообщения и делать вложения в них. Функция вложения используется для отправки по почте документов любого типа, например текстовых документов, электронных таблиц, мультимедиа файлов, файлов БД и т.д. Разработанное позже ПО для фильтрации текста расширило возможности электронной почты, чтобы помочь пользователю в структурировании, направлении и фильтрации сообщений. Потребность в этих услугах обусловлена тем, что постоянно растет количество почты, которая почти или совсем не нужна пользователю (Spam). ПО для фильтрации может обеспечивать доставку пользователям только персональных сообщений, содержащих важные для них новости, а также помогает находить информацию, необходимую пользователям в процессе принятия решений.

Телеконференции или группы новостей . Телеконференции - следующий этап развития систем общения. Их особенностями стали, во-первых, хранение сообщений и предоставление заинтересованным лицам доступа ко всей истории обмена, а во-вторых, различные способы тематической группировки сообщений. Такие системы проведения конференций дают возможность группе совместно работающих, но территориально разделенных людей обмениваться в режиме on-line мнениями, идеями или информацией при обсуждении какого-либо вопроса, преодолев временные и пространственные барьеры. В настоящее время существует масса разновидностей систем проведения конференций, включая компьютерные конференции (совещания, проводимые с помощью электронной почты), селекторные совещания с возможностью подключения мобильных абонентов, конференции с использованием настольных ПК, средств мультимедиа, теле- и видеоконференции.

Интерактивное общение (чаты). С развитием телекоммуникаций все большее количество пользователей начинают работать в Интернете в режиме постоянного присутствия, поэтому появился сервис общения в режиме реального времени, когда абонент получает сообщение в течение незначительного промежутка времени после отправки его собеседником.

Наиболее распространенными современными средствами интерактивного общения являются Web-приложения, которые поддерживают следующие формы организации общения:

o Гостевые книги. Первая и самая простая форма. Простейшая гостевая книга представляет собой список сообщений, показанных от последних к первым, каждое из которых оставлено в ней каким-либо посетителем.

o Форумы . Первые форумы появились как усовершенствование гостевых книг и организовывали сообщения в ветви - как в телеконференциях. Сообщения пользователей в форумах группируются по темам, которые задаются, как правило, первыми сообщениями. Все посетители могут увидеть тему и разместить свое сообщение - в ответ на уже написанные. Темы группируются в тематические форумы, управление системой осуществляют неформальные администраторы и модераторы. Наиболее развитые форумы начинают обладать первыми признаками социальных сетей - между участниками могут быть установлены долговременные социальные связи по интересам.

o Блоги (Web Log - Web-журнал, Web-протокол). В этих сервисах каждый участник ведет собственный журнал - оставляет записи в хронологическом порядке. Темы записей могут быть любыми, самый распространенный подход - это ведение блога как собственного дневника. Другие посетители могут оставлять комментарии на эти записи. В этом случае пользователь, помимо возможности вести свой журнал, получает возможность организовывать листинговый просмотр - список записей из журналов «друзей», регулировать доступ к записям, искать себе собеседников по интересам. На базе таких систем создаются сообщества по интересам - журналы, которые ведутся коллективно. В таком сообществе его членом может быть свободно размещено любое сообщение по направлению деятельности сообщества.

В целом все современные системы обеспечения работы сетевых сообществ обладают несколькими общими чертами:

· В подавляющем большинстве сообществ предусматривается регистрация пользователей, т.е. на каждого участника должна быть заведена учетная запись. При регистрации пользователь указывает некоторую информацию о себе для идентификации. Почти все системы требуют ввода адреса электронной почты и проверяют его работоспособность, высылая письмо с кодом активации учетной записи. Если адрес неверен, то активировать запись может только администратор системы. Такой подход гарантирует до определенной степени уникальность участника и его идентифицируемость.

· Работа в среде проводится сеансами. Каждый сеанс начинается с того, что пользователь указывает свое имя и подтверждает свою личность вводом пароля. Для удобства сеансовость участия обычно скрывается от пользователя техническими средствами, но, тем не менее, идентификация пользователя происходит постоянно.

· Помимо учетных данных, пользователь настраивает окружение - внешний вид, дополнительные данные о себе, указывает свои интересы, желательные контакты, темы для общения и т.д.

· Социальные сети и поддерживающие их сервисы оказались чрезвычайно эффективным методом обеспечения посещаемости сайтов, обратной связи, они постепенно стали одним из средств наполнения контента сайта содержимым, имеющим реальную коммерческую и социальную ценность.

На основе последнего подхода появилось и быстро набрало популярность довольно большое количество социальных Web-сервисов, объединенных общим названием сервисы Web 2.0. Можно указать некоторые такие ресурсы:

o Социальные закладки . Некоторые веб-сайты позволяют пользователям предоставлять в распоряжение других список закладок или популярных веб-сайтов. Такие сайты также могут использоваться для поиска пользователей с общими интересами. Пример: Delicious.

o Социальные каталоги напоминают социальные закладки, но ориентированы на использование в академической сфере, позволяя пользователям работать с БД цитат из научных статей. Примеры: Academic Search Premier, LexisNexis Academic University, CiteULike, Connotea.

o Социальные библиотеки представляют собой приложения, позволяющие посетителям оставлять ссылки на их коллекции, книги, аудиозаписи, доступные другим. Предусмотрена поддержка системы рекомендаций и рейтингов. Примеры: discogs.com, IMDb.com.

o Многопользовательские сетевые игры имитируют виртуальные миры с различными системами подсчета очков, уровней, состязательности, победителей и проигравших. Пример: World of Warcraft.

o Многоязычные социальные сети позволяют налаживать социальные связи между людьми, говорящими на разных языках. При этом используется специальное ПО, позволяющее переводить фразы с одного языка на другой в режиме реального времени. Примеры: Dudu.

o Геосоциальные сети формируют социальные связи на основании географического положения пользователя. При этом используются различные инструменты геолокации (например, GPS или гибридные системы типа технологии AlterGeo), которые дают возможность определять текущее местонахождение того или иного пользователя и соотносить его позицию в пространстве с расположением различных мест и людей вокруг.

o Профессиональные социальные сети создаются для общения на профессиональные темы, обмена опытом и информацией, поиска и предложения вакансий, развития деловых связей. Примеры: Доктор на работе, Профессионалы.ру, MyStarWay.com, LinkedIn, MarketingPeople, Viadeo.

o Сервисные социальные сети позволяют пользователям объединяться в online режиме вокруг общих для них интересов, увлечений или по различным поводам. Например, некоторые сайты предоставляют сервисы, с помощью которых пользователи могут размещать для общего доступа персональную информацию, необходимую для поиска партнеров. Примеры: LinkedIn, ВКонтакте.

o Коммерческие социальные сети ориентированы на поддержку бизнес-транзакций и формирование доверия людей к брендам на основе учета их мнений о продукте, тем самым позволяя потребителям участвовать в продвижении продукта и расширяя их осведомленность.

Дальнейшие распределенные вычислительные системы мы будем создавать с использованием технологии клиент-сервер. Эта технология обеспечивает единый подход к обмену информацией между устройствами, будь это компьютеры, расположенные на разных континентах и связанные через интернет или платы Ардуино, лежащие на одном столе и соединенные витой парой.

В дальнейших уроках я планирую рассказывать о создании информационных сетей с использованием:

  • контроллеров локальной сети Ethernet;
  • WiFi модемов;
  • GSM модемов;
  • Bluetooth модемов.

Все эти устройства осуществляют обмен данными, используя модель клиент-сервер. По такому же принципу происходит передача информации в сети Интернет.

Я не претендую на полное освещение этой объемной темы. Я хочу дать минимум информации, необходимой для понимания последующих уроков.

Технология клиент-сервер.

Клиент и сервер это программы, расположенное на разных компьютерах, в разных контроллерах и других подобных устройствах. Между собой они взаимодействуют через вычислительную сеть с помощью сетевых протоколов.

Программы-серверы являются поставщиками услуг. Они постоянно ожидают запросы от программ-клиентов и предоставляют им свои услуги (передают данные, решают вычислительные задачи, управляют чем-либо и т.п.). Сервер должен быть постоянно включен и “прослушивать” сеть. Каждая программа-сервер, как правило, может выполнять запросы от нескольких программ-клиентов.

Программа-клиент является инициатором запроса, который может произвести в любой момент. В отличие от сервера клиент не должен быть постоянно включен. Достаточно подключиться в момент запроса.

Итак, в общих чертах система клиент-сервер выглядит так:

  • Есть компьютеры, контроллеры Ардуино, планшеты, сотовые телефоны и другие интеллектуальные устройства.
  • Все они включены в общую вычислительную сеть. Проводную или беспроводную - не важно. Они могут быть подключены даже к разным сетям, связанным между собой через глобальную сеть, например через интернет.
  • На некоторых устройствах установлены программы-серверы. Эти устройства называются серверами, должны быть постоянно включены, и их задача обрабатывать запросы от клиентов.
  • На других устройствах работают программы-клиенты. Такие устройства называются клиентами, они инициируют запросы серверам. Их включают только в моменты, когда необходимо обратиться к серверам.

Например, если вы хотите с сотового телефона по WiFi включать утюг, то утюг будет сервером, а телефон – клиентом. Утюг должен быть постоянно включен в розетку, а управляющую программу на телефоне вы будете запускать по необходимости. Если к WiFi сети утюга подключить компьютер, то вы сможете управлять утюгом и с помощью компьютера. Это будет еще один клиент. WiFi микроволновая печь, добавленная в систему, будет сервером. И так систему можно расширять бесконечно.

Передача данных пакетами.

Технология клиент-сервер в общем случае предназначена для использования с объемными информационными сетями. От одного абонента до другого данные могут проходить сложный путь по разным физическим каналам и сетям. Путь доставки данных может меняться в зависимости от состояния отдельных элементов сети. Какие-то компоненты сети могут не работать в этот момент, тогда данные пойдут другим путем. Может изменяться время доставки. Данные могут даже пропасть, не дойти до адресата.

Поэтому простая передача данных в цикле, как мы передавали данные на компьютер в некоторых предыдущих уроках, в сложных сетях совершенно невозможна. Информация передается ограниченными порциями – пакетами. На передающей стороне информация разбивается на пакеты, а на приемной “склеивается” из пакетов в цельные данные. Объем пакетов обычно не больше нескольких килобайт.

Пакет это аналог обычного почтового письма. Он также, кроме информации, должен содержать адрес получателя и адрес отправителя.

Пакет состоит из заголовка и информационной части. Заголовок содержит адреса получателя и отправителя, а также служебную информацию, необходимую для “склейки” пакетов на приемной стороне. Сетевое оборудование использует заголовок для определения, куда передавать пакет.

Адресация пакетов.

На эту тему в интернете есть много подробной информации. Я хочу рассказать как можно ближе к практике.

Уже в следующем уроке для передачи данных с использованием клиент-серверной технологии нам придется задавать информацию для адресации пакетов. Т.е. информацию, куда доставлять пакеты данных. В общем случае нам придется задавать следующие параметры:

  • IP-адрес устройства;
  • маску подсети;
  • доменное имя;
  • IP-адрес сетевого шлюза;
  • MAC-адрес;
  • порт.

Давайте разбираться, что это такое.

IP-адреса.

Технология клиент-сервер предполагает, что все абоненты всех сетей мира подключены к единой глобальной сети. На самом деле во многих случаях это так и есть. Например, большинство компьютеров или мобильных устройств подключено к интернету. Поэтому используется формат адресации, рассчитанный на такое громадное количество абонентов. Но даже если технология клиент-сервер применяется в локальных сетях, все равно сохраняется принятый формат адресов, при явной избыточности.

Каждой точке подключения устройства к сети присваивается уникальный номер – IP-адрес (Internet Protocol Address). IP-адрес присваивается не устройству (компьютеру), а интерфейсу подключения. В принципе устройства могут иметь несколько точек подключения, а значит несколько различных IP-адресов.

IP-адрес это 32х разрядное число или 4 байта. Для наглядности принято записывать его в виде 4 десятичных чисел от 0 до 255, разделенных точками. Например, IP-адрес моего сервера 31.31.196.216.

Для того чтобы сетевому оборудованию было проще выстраивать маршрут доставки пакетов в формат IP-адреса введена логическая адресация. IP-адрес разбит на 2 логических поля: номер сети и номер узла. Размеры этих полей зависят от значения первого (старшего) октета IP-адреса и разбиты на 5 групп – классов. Это так называемый метод классовой маршрутизации.

Класс Старший октет Формат

(С-сеть,
У-узел)

Начальный адрес Конечный адрес Количество сетей Количество узлов
A 0 С.У.У.У 0.0.0.0 127.255.255.255 128 16777216
B 10 С.С.У.У 128.0.0.0 191.255.255.255 16384 65534
C 110 С.С.С.У 192.0.0.0 223.255.255.255 2097152 254
D 1110 Групповой адрес 224.0.0.0 239.255.255.255 - 2 28
E 1111 Резерв 240.0.0.0 255.255.255.255 - 2 27

Класс A предназначен для применения в больших сетях. Класс B используется в сетях средних размеров. Класс C предназначен для сетей с небольшим числом узлов. Класс D используется для обращения к группам узлов, а адреса класса E зарезервированы.

Существуют ограничения на выбор IP-адресов. Я посчитал главными для нас следующие:

  • Адрес 127.0.0.1 называется loopback и используется для тестирования программ в пределах одного устройства. Данные посланы по этому адресу не передаются по сети, а возвращаются программе верхнего уровня, как принятые.
  • “Серые” адреса – это IP-адреса разрешенные только для устройств, работающих в локальных сетях без выхода в Интернет. Эти адреса никогда не обрабатываются маршрутизаторами. Их используют в локальных сетях.
    • Класс A: 10.0.0.0 – 10.255.255.255
    • Класс B: 172.16.0.0 – 172.31.255.255
    • Класс C: 192.168.0.0 – 192.168.255.255
  • Если поле номера сети содержит все 0, то это означает, что узел принадлежит той же самой сети, что и узел, который отправил пакет.

Маски подсетей.

При классовом методе маршрутизации число битов адресов сети и узла в IP-адресе задается типом класса. А классов всего 5, реально используется 3. Поэтому метод классовой маршрутизации в большинстве случаях не позволяет оптимально выбрать размер сети. Что приводит к неэкономному использованию пространства IP-адресов.

В 1993 году был введен бесклассовый способ маршрутизации, который в данный момент является основным. Он позволяет гибко, а значит и рационально выбирать требуемое количество узлов сети. В этом методе адресации применяются маски подсети переменной длины.

Сетевому узлу присваивается не только IP-адрес, но и маска подсети. Она имеет такой же размер, как и IP-адрес, 32 бит. Маска подсети и определяет, какая часть IP-адреса относится к сети, а какая к узлу.

Каждый бит маски подсети соответствует биту IP-адреса в том же разряде. Единица в бите маски говорит о том, что соответствующий бит IP-адреса принадлежит сетевому адресу, а бит маски со значением 0 определяет принадлежность бита IP-адреса к узлу.

При передаче пакета, узел с помощью маски выделяет из своего IP-адреса сетевую часть, сравнивает ее с адресом назначения, и если они совпадают, то это означает, что передающий и приемный узлы находятся в одной сети. Тогда пакет доставляется локально. В противном случае пакет передается через сетевой интерфейс в другую сеть. Подчеркиваю, что маска подсети не является частью пакета. Она влияет только на логику маршрутизации узла.

По сути, маска позволяет одну большую сеть разбить на несколько подсетей. Размер любой подсети (число IP-адресов) должен быть кратным степени числа 2. Т.е. 4, 8, 16 и т.д. Это условие определяется тем, что биты полей адресов сети и узлов должны идти подряд. Нельзя задать, например, 5 битов - адрес сети, затем 8 битов – адрес узла, а затем опять биты адресации сети.

Пример формы записи сети с четырьмя узлами выглядит так:

Сеть 31.34.196.32, маска 255.255.255.252

Маска подсети всегда состоит из подряд идущих единиц (признаков адреса сети) и подряд идущих нулей (признаков адреса узла). Основываясь на этом принципе, существует другой способ записи той же адресной информации.

Сеть 31.34.196.32/30

/30 это число единиц в маске подсети. В данном примере остается два нуля, что соответствует 2 разрядам адреса узла или четырем узлам.

Размер сети (количество узлов) Длинная маска Короткая маска
4 255.255.255.252 /30
8 255.255.255.248 /29
16 255.255.255.240 /28
32 255.255.255.224 /27
64 255.255.255.192 /26
128 255.255.255.128 /25
256 255.255.255.0 /24
  • Последнее число первого адреса подсети должно делиться без остатка на размер сети.
  • Первый и последний адреса подсети – служебные, их использовать нельзя.

Доменное имя.

Человеку неудобно работать с IP-адресами. Это наборы чисел, а человек привык читать буквы, еще лучше связно написанные буквы, т.е. слова. Для того, чтобы людям было удобнее работать с сетями используется другая система идентификации сетевых устройств.

Любому IP-адресу может быть присвоен буквенный идентификатор, более понятный человеку. Идентификатор называется доменным именем или доменом.

Доменное имя это последовательность из двух или более слов, разделенных точками. Последнее слово это домен первого уровня, предпоследнее – домен второго уровня и т.д. Думаю, об этом знают все.

Связь между IP-адресами и доменными именами происходит через распределенную базу данных, с использованием DNS-серверов. DNS-сервер должен иметь каждый владелец домена второго уровня. DNS-серверы объединены в сложную иерархическую структуру и способны обмениваться между собой данными о соответствии IP-адресов и доменных имен.

Но это все не так важно. Для нас главное, что любой клиент или сервер может обратиться к DNS-серверу с DNS-запросом, т.е. с запросом о соответствии IP-адрес – доменное имя или наоборот доменное имя – IP-адрес. Если DNS-сервер обладает информацией о соответствии IP-адреса и домена, то он отвечает. Если не знает, то ищет информацию на других DNS-серверах и после этого сообщает клиенту.

Сетевые шлюзы.

Сетевой шлюз это аппаратный маршрутизатор или программа для сопряжения сетей с разными протоколами. В общем случае его задача конвертировать протоколы одного типа сети в протоколы другой сети. Как правило, сети имеют разные физические среды передачи данных.

Пример – локальная сеть из компьютеров, подключенная к Интернету. В пределах своей локальной сети (подсети) компьютеры связываются без необходимости в каком-либо промежуточном устройстве. Но как только компьютер должен связаться с другой сетью, например выйти в Интернет, он использует маршрутизатор, который выполняет функции сетевого шлюза.

Роутеры, которые есть у каждого, кто подключен к проводному интернету, являются одним из примеров сетевого шлюза. Сетевой шлюз это точка, через которую обеспечивается выход в Интернет.

В общем случае использование сетевого шлюза выглядит так:

  • Допустим у нас система из нескольких плат Ардуино, подключенных через локальную сеть Ethernet к маршрутизатору, который в свою очередь подключен к Интернету.
  • В локальной сети мы используем ”серые” IP-адреса (выше об этом написано), которые не допускают выхода в Интернет. У маршрутизатора два интерфейса: нашей локальной сети с “серым” IP-адресом и интерфейс для подключения к Интернету с ”белым” адресом.
  • В конфигурации узла мы указываем адрес шлюза, т.е. “белый” IP-адрес интерфейса маршрутизатора, подключенного к Интернету.
  • Теперь, если маршрутизатор получает от устройства с ”серым” адресом пакет с запросом на получение информации из Интернета, он заменяет в заголовке пакета ”серый” адрес на свой ”белый” и отправляет его в глобальную сеть. Получив из Интернета ответ, он заменяет ”белый” адрес на запомненный при запросе ”серый” и передает пакет локальному устройству.

MAC-адрес.

MAC-адрес это уникальный идентификатор устройств локальной сети. Как правило, он записывается на заводе-производителе оборудования в постоянную память устройства.

Адрес состоит из 6 байтов. Принято записывать его в шестнадцатеричной системе исчисления в следующих форматах: c4-0b-cb-8b-c3-3a или c4:0b:cb:8b:c3:3a. Первые три байта это уникальный идентификатор организации-производителя. Остальные байты называются ”Номер интерфейса” и их значение является уникальным для каждого конкретного устройства.

IP-адрес является логическим и устанавливается администратором. MAC-адрес – это физический, постоянный адрес. Именно он используется для адресации фреймов, например, в локальных сетях Ethernet. При передаче пакета по определенному IP-адресу компьютер определяет соответствующий MAC-адрес с помощью специальной ARP-таблицы. Если в таблице отсутствуют данные о MAC-адресе, то компьютер запрашивает его с помощью специального протокола. Если MAC-адрес определить не удается, то пакеты этому устройству посылаться не будут.

Порты.

С помощью IP-адреса сетевое оборудование определяет получателя данных. Но на устройстве, например сервере, могут работать несколько приложений. Для того чтобы определить какому приложению предназначены данные в заголовок добавлено еще одно число – номер порта.

Порт используется для определения процесса приемника пакета в пределах одного IP-адреса.

Под номер порта выделено 16 бит, что соответствует числам от 0 до 65535. Первые 1024 портов зарезервированы под стандартные процессы, такие как почта, веб-сайты и т.п. В своих приложениях их лучше не использовать.

Статические и динамические IP-адреса. Протокол DHCP.

IP-адреса могут назначаться вручную. Достаточно утомительная операция для администратора. А в случае, когда пользователь не обладает нужными знаниями, задача становится трудноразрешимой. К тому же не все пользователи находятся постоянно подключенными к сети, а выделенные им статические адреса другие абоненты использовать не могут.

Проблема решается применением динамических IP-адресов. Динамические адреса выдаются клиентам на ограниченное время, пока они непрерывно находятся в сети. Распределение динамических адресов происходит под управлением протокола DHCP.

DHCP – это сетевой протокол, позволяющий устройствам автоматически получать IP-адреса и другие параметры, необходимые для работы в сети.

На этапе конфигурации устройство-клиент обращается к серверу DHCP, и получает от него необходимые параметры. Может быть задан диапазон адресов, распределяемых среди сетевых устройств.

Просмотр параметров сетевых устройств с помощь командной строки.

Существует много способов, как узнать IP-адрес или MAC-адрес своей сетевой карты. Самый простой – это использовать CMD команды операционной системы. Я покажу, как это делать на примере Windows 7.

В папке Windows\System32 находится файл cmd.exe. Это интерпретатор командной строки. С помощь него можно получать системную информацию и конфигурировать систему.

Открываем окно выполнить. Для этого выполняем меню Пуск -> Выполнить или нажимаем комбинацию клавиш Win + R .

Набираем cmd и нажимаем OK или Enter. Появляется окно интерпретатора команд.

Теперь можно задавать любые из многочисленных команд. Пока нас интересуют команды для просмотра конфигурации сетевых устройств.

Прежде всего, это команда ipconfig , которая отображает настройки сетевых плат.

Подробный вариант ipconfig/all .

Только MAC-адреса показывает команда getmac .

Таблицу соответствия IP и MAC адресов (ARP таблицу) показывает команда arp –a .

Проверить связь с сетевым устройством можно командой ping .

  • ping доменное имя
  • ping IP-адрес

Сервер моего сайта отвечает.

Основные сетевые протоколы.

Я коротко расскажу о протоколах, необходимых нам в дальнейших уроках.

Сетевой протокол это набор соглашений, правил, которые определяют обмен данными в сети. Мы не собираемся реализовывать эти протоколы на низком уровне. Мы намерены использовать готовые аппаратные и программные модули, которые реализуют сетевые протоколы. Поэтому нет необходимости подробно разбирать форматы заголовков, данных и т.п. Но, зачем нужен каждый протокол, чем он отличается от других, когда используется знать надо.

Протокол IP.

Inernet Protocol (межсетевой протокол) доставляет пакеты данных от одного сетевого устройства к другому. IP протокол объединяет локальные сети в единую глобальную сеть, обеспечивая передачу пакетов информации между любыми устройствами сетей. Из представленных в этом уроке протоколов IP находится на самом низком уровне. Все остальные протоколы используют его.

IP протокол работает без установления соединений. Он просто пытается доставить пакет по указанному IP-адресу.

IP обрабатывает каждый пакет данных, как отдельную независимую единицу, не связанную с другими пакетами. Невозможно используя только IP протокол, передать значительный объем связанных данных. Например, в сетях Ethernet максимальный объем данных одного IP-пакета составляет всего 1500 байт.

В протоколе IP нет механизмов, позволяющих контролировать достоверность конечных данных. Контрольные коды используются только для защиты целостности данных заголовка. Т.е. IP не гарантирует, что данные в полученном пакете будут правильными.

Если во время доставки пакета произошла ошибка, и пакет был потерян, то IP не пытается заново послать пакет. Т.е. IP не гарантирует, что пакет будет доставлен.

Коротко о протоколе IP можно сказать, что:

  • он доставляет небольшие (не более 1500 байт) отдельные пакеты данных между IP-адресами;
  • он не гарантирует, что доставленные данные будут правильными;

Протокол TCP.

Transmission Control Protocol (протокол управления передачей) основной протокол передачи данных Интернета. Он использует способность IP протокола доставлять информацию от одного узла другому. Но в отличии от IP он:

  • Позволяет переносить большие объемы информации. Разделение данных на пакеты и “склеивание” данных на приемной стороне обеспечивает TCP.
  • Данные передаются с предварительной установкой соединения.
  • Производит контроль целостности данных.
  • В случае потери данных инициирует повторные запросы потерянных пакетов, устраняет дублирование при получении копий одного пакета.

По сути, протокол TCP снимает все проблемы доставки данных. Если есть возможность, он их доставит. Не случайно это основной протокол передачи данных в сетях. Часто используют терминологию TCP/IP сети.

Протокол UDP.

User Datagram Protokol (протокол пользовательских датаграмм) простой протокол для передачи данных без установления соединения. Данные отправляются в одном направлении без проверки готовности приемника и без подтверждения доставки. Объем данных пакета может достигать 64 кБайт, но на практике многие сети поддерживают размер данных только 1500 байт.

Главное достоинство этого протокола – простата и высокая скорость передачи. Часто применяется в приложениях критичных к скорости доставки данных, таких как видеопотоки. В подобных задачах предпочтительнее потерять несколько пакетов, чем ждать отставшие.

Протоколу UDP свойственно:

  • это протокол без установления соединений;
  • он доставляет небольшие отдельные пакеты данных между IP-адресами;
  • он не гарантирует, что данные вообще будут доставлены;
  • он не сообщит отправителю, были ли доставлены данные и не повторит передачу пакета;
  • нет упорядоченности пакетов, порядок доставки сообщений не определен.

Протокол HTTP.

Скорее всего, об этом протоколе в следующих уроках буду писать подробнее. А сейчас коротко скажу, что это протокол передачи гипертекста (Hyper Text Transfer Protocol). Он используется для получения информации с веб-сайтов. При этом веб-браузер выступает в роли клиента, а сетевое устройство в качестве веб-сервера.

В следующем уроке будем применять технологию клиент-сервер на практике, используя сеть Ethernet.

Департамент общего и профессионального образования Брянской области

Государственное образовательное учреждение

Клинцовский текстильный техникум

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ

Технология «Клиент – сервер»

Студент гр. А-90______________________(Петроченко А.О.)

Преподаватель _______________________ (Широкова А.Л.)

Клинцы – 2011

1. Серверы. Основные понятия серверов

2. Модель клиент-сервер

3. Классификация стандартных серверов

4. Вывод

1. Серверы. Основные понятия серверов

Сервер (от англ. server, обслуживающий). В зависимости от предназначения существует несколько определений понятия сервер.

1. Сервер (сеть) - логический или физический узел сети, обслуживающий запросы к одному адресу и/или доменному имени (смежным доменным именам), состоящий из одного или системы аппаратных серверов, на котором выполняются один или система серверных программ

2. Сервер (программное обеспечение) - программное обеспечение, принимающее запросы от клиентов (в архитектуре клиент-сервер).

3. Сервер (аппаратное обеспечение) - компьютер (или специальное компьютерное оборудование) выделенный и/или специализированный для выполнения определенных сервисных функций.

3. Сервер в информационных технологиях - программный компонент вычислительной системы, выполняющий сервисные функции по запросу клиента, предоставляя ему доступ к определённым ресурсам.

Взаимосвязь понятий. Серверное приложение (сервер) запускается на компьютере, так же называемом "сервер", при этом при рассмотрении топологии сети, такой узел называют "сервером". В общем случае может быть так, что серверное приложение запущено на обычной рабочей станции, или серверное приложение, запущенное на серверном компьютере в рамках рассматриваемой топологии выступает в роли клиента (т.е. не является сервером с точки зрения сетевой топологии).

2. Модель клиент-сервер

Клиент-серверная система характеризуется наличием двух взаимодействующих самостоятельных процессов - клиента и сервера, которые, в общем случае, могут выполняться на разных компьютерах, обмениваясь данными по сети.

Процессы, реализующие некоторую службу, например службу файловой системы или базы данных, называются серверами (servers). Процессы, запрашивающие службы у серверов путем посылки запроса и последующего ожидания ответа от сервера, называются клиентами (clients) .

По такой схеме могут быть построены системы обработки данных на основе СУБД, почтовые и другие системы. Мы будем говорить о базах данных и системах на их основе. И здесь удобнее будет не просто рассматривать клиент-серверную архитектуру, а сравнить ее с другой - файл-серверной.

В файл-серверной системе данные хранятся на файловом сервере (например, Novell NetWare или Windows NT Server), а их обработка осуществляется на рабочих станциях, на которых, как правило, функционирует одна из, так называемых, "настольных СУБД" - Access, FoxPro, Paradox и т.п..

Приложение на рабочей станции "отвечает за все" - за формирование пользовательского интерфейса, логическую обработку данных и за непосредственное манипулирование данными. Файловый сервер предоставляет услуги только самого низкого уровня - открытие, закрытие и модификацию файлов. Обратите внимание - файлов, а не базы данных. Система управления базами данных расположена на рабочей станции.

Таким образом, непосредственным манипулированием данными занимается несколько независимых и несогласованных между собой процессов. Кроме того, для осуществления любой обработки (поиск, модификация, суммирование и т.п.) все данные необходимо передать по сети с сервера на рабочую станцию (см. рис. Сравнение файл-серверной и клиент-серверной моделей)

Рис. Сравнение файл-серверной и клиент-серверной моделей

В клиент-серверной системе функционируют (как минимум) два приложения - клиент и сервер, делящие между собой те функции, которые в файл-серверной архитектуре целиком выполняет приложение на рабочей станции. Хранением и непосредственным манипулированием данными занимается сервер баз данных, в качестве которого может выступать Microsoft SQL Server, Oracle, Sybase и т.п..

Формированием пользовательского интерфейса занимается клиент, для построения которого можно использовать целый ряд специальных инструментов, а также большинство настольных СУБД. Логика обработки данных может выполняться как на клиенте, так и на сервере. Клиент посылает на сервер запросы, сформулированные, как правило, на языке SQL. Сервер обрабатывает эти запросы и передает клиенту результат (разумеется, клиентов может быть много).

Таким образом, непосредственным манипулированием данными занимается один процесс. При этом, обработка данных происходит там же, где данные хранятся - на сервере, что исключает необходимость передачи больших объемов данных по сети.

Что дает архитектура клиент-сервер?

Посмотрим на данную архитектуру с точки зрения потребностей бизнеса. Какие же качества привносит клиент-сервер в информационную систему?

Надежность

Сервер баз данных осуществляет модификацию данных на основе механизма транзакций, который придает любой совокупности операций, объявленных как транзакция, следующие свойства:

  • атомарность - при любых обстоятельствах будут либо выполнены все операции транзакции, либо не выполнена ни одна; целостность данных при завершении транзакции;
  • независимость - транзакции, инициированные разными пользователями, не вмешиваются в дела друг друга;
  • устойчивость к сбоям - после завершения транзакции, ее результаты уже не пропадут.

Механизм транзакций, поддерживаемый сервером баз данных, намного более эффективен, чем аналогичный механизм в настольных СУБД, т.к. сервер централизованно контролирует работу транзакций. Кроме того, в файл-серверной системе сбой на любой из рабочих станций может привести к потере данных и их недоступности для других рабочих станций, в то время, как в клиент-серверной системе сбой на клиенте, практически, никогда не сказывается на целостности данных и их доступности для других клиентов.

Масштабируемость

Масштабируемость - способность системы адаптироваться к росту количества пользователей и объема базы данных при адекватном повышении производительности аппаратной платформы, без замены программного обеспечения.

Общеизвестно, что возможности настольных СУБД серьезно ограничены - это пять-семь пользователей и 30-50 Мб, соответственно. Цифры, разумеется, представляют собой некие средние значения, в конкретных случаях они могут отклоняться как в ту, так и в другую сторону. Что наиболее существенно, эти барьеры нельзя преодолеть за счет наращивания возможностей аппаратуры.

Системы же на основе серверов баз данных могут поддерживать тысячи пользователей и сотни ГБ информации - дайте им только соответствующую аппаратную платформу.

Безопасность

Сервер баз данных предоставляет мощные средства защиты данных от несанкционированного доступа, невозможные в настольных СУБД. При этом, права доступа администрируются очень гибко - до уровня полей таблиц. Кроме того, можно вообще запретить прямое обращение к таблицам, осуществляя взаимодействие пользователя с данными через промежуточные объекты - представления и хранимые процедуры. Так что администратор может быть уверен - никакой слишком умный пользователь не прочитает то, что ему читать неположено.

Гибкость

В приложении, работающем с данными, можно выделить три логических слоя:

  • пользовательского интерфейса ;
  • правил логической обработки (бизнес-правил);
  • управления данными (не следует только путать логические слои с физическими уровнями, о которых речь пойдет ниже).

Как уже говорилось, в файл-серверной архитектуре все три слоя реализуются в одном монолитном приложении, функционирующем на рабочей станции. Поэтому изменения в любом из слоев приводят однозначно к модификации приложения и последующему обновлению его версий на рабочих станциях.

В двухуровневом клиент-серверном приложении, показанном на рисунке выше, как правило, все функции по формированию пользовательского интерфейса реализуются на клиенте, все функции по управлению данными - на сервере, а вот бизнес-правила можно реализовать как на сервере используя механизмы программирования сервера (хранимые процедуры, триггеры, представления и т.п.), так и на клиенте.

В трехуровневом приложении появляется третий, промежуточный уровень, реализующий бизнес-правила, которые являются наиболее часто изменяемыми компонентами приложения (см. рис. Трехуровневая модель клиент-серверного приложения )

Рис. Трехуровневая модель клиент-серверного приложения

Наличие не одного, а нескольких уровней позволяет гибко и с минимальными затратами адаптировать приложение к изменяющимся требованиям бизнеса.

Попробуем все вышеизложенное проиллюстрировать на маленьком примере. Предположим, в некоей организации изменились правила расчета заработной платы (бизнес-правила) и требуется обновить соответствующее программное обеспечение.

1) В файл-серверной системе мы "просто" вносим изменения в приложение и обновляем его версии на рабочих станциях. Но это "просто" влечет за собой максимальные трудозатраты.

2) В двухуровневой клиент-серверной системе, если алгоритм расчета зарплаты реализован на сервере в виде правила расчета зарплаты, его выполняет сервер бизнес-правил, выполненный, например, в виде OLE-сервера, и мы обновим один из его объектов, ничего не меняя ни в клиентском приложении, ни на сервере баз данных.

3 Технология «Клиент – сервер»

Технология «клиент-сервер» пришла на смену централизованной схеме управления вычислительным процессом на мейнфреймах еще в 80-х годах прошлого века. Благодаря высокой живучести и надежности вычислительной системы, легкости масштабирования, возможности одновременной работы пользователя с несколькими приложениями, высокой оперативности обработки информации, обеспечению пользователя высококачественным интерфейсом и другим возможностям эта весьма перспективная и далеко не исчерпавшая себя технология получила свое дальнейшее развитие.

Со временем малофункциональную модель файлового сервера для локальных сетей (FS) заменили появившиеся одна за одной модели структуры «Клиент- сервер» (RDA, DBS и AS).

Заняв нишу баз данных, технология «Клиент – сервер» стала основной технологией глобальной сети Internet. Далее, в результате перенесения идей сети Internet в среду корпоративных систем, появилась технология Intranet. В отличие от технологии «Клиент-сервер» эта технология ориентирована не на данные, а на информацию в ее окончательно готовом к потреблению виде. Вычислительные системы, построенные на основе Intranet, имеют в своем составе центральные серверы информации и распределенные компоненты представления информации конечному пользователю (программы-навигаторы, или браузеры). Взаимодействие между клиентом и сервером в Intranet происходит при помощи web – технологий.

На сегодняшний день технология «Клиент-сервер» получает все большее распространение, однако сама по себе она не предлагает универсальных рецептов. Она лишь дает общее представление о том, как должна быть организована современная распределенная информационная система. В то же время реализации этой технологии в конкретных программных продуктах и даже в видах программного обеспечения различаются весьма существенно.

3.1 Классическая двухуровневая архитектура «Клиент – сервер»

Обычно компоненты сети не равноправны: у одних есть доступ к ресурсам (например, принтер, процессор, система управления базой данных (СУБД), файловая система и так далее), другие имеют возможность обращаться к этим ресурсам.

Технология «Клиент – сервер» - это архитектура программного комплекса, в которой происходит распределение прикладной программы по двум логически различным компонентам (клиент и сервер), взаимодействующим по схеме «запрос-ответ» и решающим свои определенные задачи (рисунок 6).

Рисунок 6 – Архитектура «Клиент – сервер»

Компьютер (или программа), управляющий и/или владеющий каким-либо ресурсом, называют сервером этого ресурса.

Компьютер (или программа), запрашивающий и пользующийся каким-либо ресурсом, называют клиентом этого ресурса.

Клиент и сервер могут находиться как на одном компьютере (ПК), так и на разных ПК в сети. Также может возникать такая ситуация, когда некоторый программный блок будет одновременно выполнять функции сервера по отношению к одному блоку и клиента по отношению к другому.

Основной принцип технологии «Клиент-сервер» заключается в разделении функций приложения как минимум на три группы:

- модули интерфейса с пользователем ;

Также эту группу называют логикой представления. Через эту группу пользователи взаимодействуют с приложением. Независимо от конкретных характеристик логики представления (интерфейс командной строки, сложные графические пользовательские интерфейсы, интерфейсы через посредника) ее задача состоит в том, чтобы обеспечить средства для наиболее эффективного обмена информацией между пользователем и информационной системой.

- модули хранения данных ;

Эту группу также называют бизнес-логикой. Бизнес-логика определяет, для чего конкретно предназначено приложение (например, прикладные функции, характерные для данной предметной области). Разделение приложения по границам между программами обеспечивает естественную основу для распределения приложения на нескольких компьютерах.

- модули обработки данных (функции управления ресурсами);

Эту группу также называют логикой доступа к данным или алгоритмами доступа к данным. Алгоритмы доступа к данным исторически рассматривались как специфический для конкретного приложения интерфейс к механизму постоянного хранения данных наподобие файловой системы или СУБД. При помощи модулей обработки данных организуется специфический для приложения интерфейс к СУБД. При помощи интерфейса приложение управляет соединениями с базой данных и запросами к ней (перевод специфических для конкретного приложения запросов на язык SQL, получение результатов и перевод этих результатов обратно в специфические для конкретного приложения структуры данных).

Каждая из этих групп может быть реализована независимо от двух других. Например, не изменяя программ, используемых для хранения и обработки данных, можно изменить интерфейс с пользователем таким образом, что одни и те же данные будут отображаться в виде таблиц, графиков или гистограмм. Очень простые приложения часто способны собрать все три части в единственную программу, и подобное разделение соответствует функциональным границам.

В соответствии с разделением функций в любом приложении выделяются следующие компоненты:

- компонент представления данных;

- прикладной компонент;

- компонент управления ресурсом.

В классической архитектуре клиент-сервер приходится распределять три основные части приложения по двум физическим модулям. Обычно прикладной компонент располагается на сервере (например, сервере базы данных), компонент представления данных - на стороне клиента, а компонент управления ресурсом распределяется между клиентской и серверной частями. В этом заключается основной недостаток классической двухуровневой архитектуры.

В двухзвенной архитектуре при разбиении алгоритмов обработки данных разработчики должны иметь полную информацию о последних изменениях, внесенных в систему, и понимать эти изменения, что создает большие сложности при разработке клиент-серверных систем, их установке и сопровождении, поскольку необходимо тратить значительные усилия на координацию действий разных групп специалистов. В действиях разработчиков часто возникают противоречия, а это тормозит развитие системы и вынуждает изменять уже готовые и проверенные элементы.

Чтобы избежать несогласованности различных элементов архитектуры были созданы две модификации двухзвенной архитектуры «Клиент – сервер»: «Толстый клиент» («Тонкий сервер») и «Тонкий клиент» («Толстый сервер»).

В данных архитектурах разработчики попытались выполнять обработку данных на одной из двух физических частей - либо на стороне клиента («Толстый клиент»), либо на сервере («Тонкий клиент).

Каждый подход имеет свои недостатки. В первом случае неоправданно перегружается сеть, потому что по ней передаются необработанные, а значит, избыточные данные. Кроме того, усложняется поддержка системы и ее изменение, так как замена алгоритма вычислений или исправление ошибки требует одновременной полной замены всех интерфейсных программ, а иначе могут возникнуть ошибки или несогласованность данных. Если же вся обработка информации выполняется на сервере, то возникает проблема описания встроенных процедур и их отладки. Систему с обработкой информации на сервере абсолютно невозможно перенести на другую платформу (ОС), что является серьезным недостатком.

Есди все-таки разрабатывается двухуровневая классическая архитектура «Клиент – сервер», то необходимо помнить следующее:

- архитектура «Толстый сервер» аналогична архитектуре «Тонкий клиент» (рисунок 33) ;

Рисунок 33. – Архитектура «Тонкий клиент»

Передача запроса от клиента на сервер, обработка запроса сервером и передача результата клиенту. При этом архитектуры имеют следующие недостатки:

Усложняется реализация, так как языки типа SQL не приспособлены для разработки подобного ПО и нет хороших средств отладки;

Производительность программ, написанных на языках типа SQL, значительно ниже, чем созданных на других языках, что имеет важное значение для сложных систем;

Программы, написанные на СУБД-языках, обычно работают недостаточно надежно; ошибка в них может привести к выходу из строя всего сервера баз данных;

Получившиеся таким образом программы полностью непереносимы на другие системы и платформы.

- архитектура «Тонкий сервер» аналогична архитектуре «Толстый клиент» (рисунок 34).

Обработка запроса происходит на стороне клиента, то есть происходит передача клиенту всех необработанных данных с сервера. При этом архитектуры имеют следующие недостатки:

Усложняется обновление ПО, поскольку его замену нужно производить одновременно по всей системе;

Усложняется распределение полномочий, так как разграничение доступа происходит не по действиям, а по таблицам;

Перегружается сеть вследствие передачи по ней необработанных данных;

Слабая защита данных, поскольку сложно правильно распределить полномочия.

Рисунок 34. – Архитектура «Толстый клиент»

Для решения перечисленных проблем используются многоуровневые (три и более уровней) архитектуры «Клиент-сервер».

3.2 Трехуровневая модель

С середины 90-х годов прошлого века признание специалистов получила трехзвенная архитектура «Клиент – сервер», которая разделила информационную систему по функциональным возможностям на три отдельных компонента: логика представления, бизнес-логика и логика доступа к данным. В отличие от двухзвенной архитектуры в трехзвенной появляется дополнительное звено - сервер приложений, который предназначен для осуществления бизнес-логики, при этом полностью разгружается клиент, который направляет запросы промежуточному программному обеспечению, и максимально используются все возможности серверов.

В трехуровневой архитектуре клиент обычно не перегружен функциями обработки данных, а выполняет свою основную роль системы представления информации, поступающей с сервера приложений. Такой интерфейс можно реализовать с помощью стандартных средств Web-технологии - браузера, CGI и Java. Это уменьшает объем данных, передаваемых между клиентом и сервером приложений, что позволяет подключать клиентские компьютеры даже по медленным линиям типа телефонных каналов. Кроме того, клиентская часть может быть настолько простой, что в большинстве случаев ее реализуют с помощью универсального браузера. Но если менять ее все-таки придется, то эту процедуру можно осуществить быстро и безболезненно.

Сервер приложений – это программное обеспечение, являющееся промежуточным слоем между клиентом и сервером (рисунок 35).

Рисунок 35 - Сервер приложений

Существует несколько категорий продуктов промежуточного слоя:

Message orientated – яркие представители MQseries и JMS;

Object Broker – яркие представители CORBA и DCOM;

Component based – яркие представители.NET и EJB.

Использование сервера приложений дает больше возможностей, например, уменьшается нагрузка на клиентские компьютеры, потому что сервер приложений распределяет нагрузку и обеспечивает защиту от сбоев. Так как бизнес-логика хранится на сервере приложений, то при каких-либо изменениях в отчетности или расчетах клиентские программы никоим образом не затрагиваются.

Существует несколько серверов приложений от таких знаменитых компаний как Sun Microsystem, Borland, IBM, Oracle и каждый из них отличается набором предоставляемых сервисов (производительность в данном случае учитывать не будем). Эти сервисы облегчают программирование и развертывание приложений масштаба предприятия. Обычно сервер приложений предоставляет следующие сервисы:

WEB Server – чаще всего включают в поставку самый популярный и мощный Apache;

WEB Container – позволяет выполнять JSP и сервлеты. Для Apache таким сервисом является Tomcat;

Клиент-сервер (англ. Client-server) - сетевая архитектура, в которой устройства являются либо клиентами, либо серверами. Клиентом является запрашивающая машина (обычно ПК), сервером - машина, которая отвечает на запрос. Оба термина (клиент и сервер) могут применяться как к физическим устройствам, так и к программному обеспечению.

Сеть с выделенным сервером (англ. Сlient/Server network) - это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Взаимодействие клиентов и серверов осуществляется с помощью специальных протоколов, например TCP/IP. С помощью технологии клиент-сервер можно осуществлять запуск лицензированных программ с помощью лицензионного менеджера.

Вопрос 57.

IP-адрес - это четырехбайтовое число, которое определяет адрес каждого компьютера в сети Интернет. Записывается оно в десятковом виде и разделяется точками на четыре части: 207.46.135.183 . IP-адрес служит только для распознания адресации одного компьютера другими, в то время как доменные адреса используются людьми для получения доступа к определенному ресурсу в сети Интернет.

Домен - это часть сети, которая определяет географическое расположение, организационное значение, а также имя, данное владельцем каждого ресурса. Доменное имя читается справа налево. Каждый домен отделяется точкой. Вот примеры доменов некоторых стран и организаций:
de - Германия. ru – Россия. ua - Украина.

IP-адрес и доменный адрес - это разные формы записи одного и того же имени компьютера. В сети Интернет существуют специальные DNS-серверы, благодаря которым доменные имена превращаются в IP-имена.

Url-адрес состоит из имени ресурса (http, ftp и других подобных имен), после которого записываются символы " :// ", далее идут доменные адреса компьютеров и полный путь к файлу на компьютере пользователя, который обладает данной информацией. Раздельный символ между каждым отдельным именем - знак "/". Например, у нас есть адрес страницы, url которой будет выглядеть вот так - http:// ,после чего будет идти имя компьютера в сети kupitdomendeshevo, а потом имя домена, обозначающего, к какому роду организаций принадлежит данный сайт - .com/ .

Вопрос 58.

Интернет Проткол подразумевает набор неких правил управления передачи данных между компьютерными терминалами, серверами, мобильными устройствами и т.д. Именно благодаря таким унифицированным настройкам и стало возможным соединение устройств по всему миру между собой посредством специальных программ или одновременного доступа к одному и тому же ресурсу.



На сегодняшний день известно несколько основных типов -это TCP/IP, UDP, FTP, ICMP, DNS, HTTP и т.д.

Различие состоит только в уровнях назначения. Так, например, существуют физические уровни (создание соединения при помощи витой пары или оптоволокна), ARP-уровень, включающий драйверы устройств, сетевой уровень (стандартные протоколы IP и ICMP), транспортный уровень (TCP и UDP), а также прикладной, куда входят протоколы типа HTTP, FTP, DNS, NFS и т.д.

Стек TCP/IP.

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

Стек протоколов TCP/IP обладает двумя важными свойствами:

· платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

· открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

59- Поисковые службы в интернете. Технологии информационного поиска в интернете. Построение запросов в поисковых службах.

Поисковые инструменты - это особое программное обеспечение, основная цель которого – обеспечить наиболее оптимальный и качественный поиск информации для пользователей Интернета. Поисковые инструменты размещаются на специальных веб-серверах, каждый из которых выполняет определенную функцию:

1. Анализ веб-страниц и занесение результатов анализа на тот или иной уровень базы данных поискового сервера.



2. Поиск информации по запросу пользователя.

3. Обеспечение удобного интерфейса для поиска информации и просмотра результата поиска пользователем.

Приемы работы, используемые при работе с теми или другими поисковыми инструментами, практически одинаковы. Перед тем как перейти к их обсуждению, рассмотрим следующие понятия:

1. Интерфейс поискового инструмента представлен в виде страницы с гиперссылками, строкой подачи запроса (строкой поиска) и инструментами активизации запроса.

2. Индекс поисковой системы – это информационная база, содержащая результат анализа веб-страниц, составленная по определенным правилам.

3. Запрос – это ключевое слово или фраза, которую вводит пользователь в строку поиска. Для формирования различных запросов используются специальные символы ("", ~), математические символы (*, +, ?).

Схема поиска информации в сети Интернет проста. Пользователь набирает ключевую фразу и активизирует поиск, тем самым получает подборку документов по сформулированному (заданному) запросу. Этот список документов ранжируется по определенным критериям так, чтобы вверху списка оказались те документы, которые наиболее соответствуют запросу пользователя. Каждый из поисковых инструментов использует различные критерии ранжирования документов, как при анализе результатов поиска, так и при формировании индекса (наполнении индексной базы данных web-страниц).

Таким образом, если указать в строке поиска для каждого поискового инструмента одинаковой конструкции запрос, можно получить различные результаты поиска. Для пользователя имеет большое значение, какие документы окажутся в первых двух-трех десятках документов по результатам поиска и на сколько эти документы соответствуют ожиданиям пользователя.

Большинство поисковых инструментов предлагают два способа поиска – simple search (простой поиск) и advanced search (расширенный поиск) с использованием специальной формы запроса и без нее. Рассмотрим оба вида поиска на примере англоязычной поисковой машины.

Например, AltaVista удобно использовать для произвольных запросов, «Something about online degrees in information technology», тогда как поисковый инструмент Yahoo позволяет получать мировые новости, информацию о курсе валют или прогнозе погоды.

Освоение критериев уточнения запроса и приемов расширенного поиска, позволяет увеличивать эффективность поиска и достаточно быстро найти необходимую информацию. Прежде всего, увеличить эффективность поиска Вы можете за счет использования в запросах логических операторов (операций) Or, And, Near, Not, математических и специальных символов. С помощью операторов и/или символов пользователь связывает ключевые слова в нужной последовательности, чтобы получить наиболее адекватный запросу результат поиска.

60-Особенности HTML документа: гипертекст, гиперссылки внутренние и внешние. Вставка гиперссылок в Word.

HTML (HyperText Markup Language) - язык разметки гипертекста - предназначен для создания Web-страниц.
Под гипертекстом в этом случае понимается текст, связанный с другими текстами указателями-ссылками.

HTML представляет собой достаточно простой набор кодов, которые описывают структуру документа. HTML позволяет выделить в тексте отдельные логические части (заголовки, абзацы, списки и т.д.), поместить на Web-страницу подготовленную фотографию или картинку, организовать на странице ссылки для связи с другими документами.

HTML не задает конкретные и точные атрибуты форматирования документа. Конкретный вид документа окончательно определяет только программа-броузер на компьютере пользователя Интернета.
HTML также не является языком программирования, но web-страницы могут включать в себя встроенные программы-скрипты на языках Javascript и Visual Basic Script и программы-апплеты на языке Java .

Основными компонентами HTML являются:

· Тег (tag). Тег HTML это компонент, который командует Web- броузеру выполнить определенную задачу типа создания абзаца или вставки изображения.

· Атрибут (или аргумент ). Атрибут HTML изменяет тег. Например, можно выровнять абзац или изображение внутри тега.

· Значение . Значения присваиваются атрибутам и определяют вносимые изменения. Например, если для тега используется атрибут выравнивания, то можно указать значение этого атрибута. Значения могут быть текстовыми, типа left или right , а также числовыми, как например ширина и высота изображения, где значения определяют размер изображения в пикселях.

Теги представляют собой зарезервированные последовательности символов, начинающиеся с < (знака меньше) и заканчивающиеся > (знаком больше).
Закрытие тега отличается от открытия только наличием символа "/" .

Предположим, у нас есть гипотетический атрибут форматирования текста, управляемый кодом , и мы хотим применить его к словам "Это мой текст".
HTML-последовательность кодов и собственно текста будет выглядеть так:

Это мой текст

Теги могут вкладываться друг в друга иерархически, но без пересечений, то есть допустимо вложение вида , но не .
Действие вложенных тагов объединяется.Например, если внутрь тега, создающего жирное начертание шрифта, вложен тег курсива, то в результате получится жирный курсив.