Токовая защита блока питания схема. Как сделать защиту от переполюсовки, от кз для блока питания своими руками

Устройства высокоскоростной защиты производства компании Bourns – базовый элемент защиты радиоэлектроники (в первую очередь – телекоммуникационных линий и интерфейсов) от бросков тока и напряжения, вызванных грозовыми разрядами, короткими замыканиями, помехами коммутации. Их преимущества – высокое быстродействие, автономность, прецизионность характеристик, широкая полоса пропускания.

Устройства TBU производства компании Bourns предназначены для высокоскоростной защиты радиоэлектронной аппаратуры от грозовых разрядов, коротких замыканий и воздействия сетевого напряжения на шины передачи данных. TBU построены с использованием MOSFET-полупроводниковой технологии и устанавливаются на входе по последовательной схеме. Защита реагирует на перегрузку как по току, так и по напряжению. При этом главным образом контролируется ток, протекающий через линию. Если входящий ток нарастает до уровня ограничения с последующим его превышением – TBU отключает напряжение от нагрузки, обеспечивая эффективный барьер для разрушающих воздействий, вплоть до их исчезновения. Когда уровень входящего тока достигает значения тока отсечки, TBU срабатывает за время, приблизительно равное 1 мкс, и ограничивает ток на линии до уровня менее 1 мА. При падении напряжения на TBU до уровня сброса Vreset или ниже устройство автоматически восстанавливает нормальное функционирование. Характер работы TBU можно рассмотреть на вольтамперной характеристике (рисунок 1).

На сегодняшний день доступны следующие семейства TBU: TBU-CA, TBU-DT, TBU-PL, P40 и P-G (P500-G, P850-G).

Таблица 1. Основные характеристики семейств TBU

Наимен. Описание Максимальное импульсное напряжение (Vimp), В Максимальное СКЗ напряжения (Vrms), В Напряжение восстановления (Vreset), В Ток срабатывания (Itrig), мА Время срабаты-вания (tblock), мкс Габаритные размеры, мм Рабочая температура (Tраб), °С
Одиночный двунаправленный 250, 400, 500, 650, 850 100, 200, 250, 300, 425 12…20 50, 100, 200, 300, 500 1 6,5×4 -55…125
Двойной однонаправленный 650, 850 300, 425 10…18 100, 200, 300, 500 1 5×5 -40…125
Двойной двунаправленный 500, 600, 750, 850 300, 350, 400, 425 12…20 100, 200 1 6,5×4 -55…125
40 28 7 240 0,2 4×4 -40…85
P-G 500, 850 300, 425 22 100, 200 1 6×4

К их основным характеристикам, рассмотренным в таблице 1, относятся:

  • Vimp – максимальное напряжение отключения при броске напряжения длительностью ≥1 мкс;
  • Vrms – максимальное напряжение отключения при воздействии переменного напряжения;
  • Vreset – номинальное напряжение восстановления работоспособности;
  • Itrig – ток срабатывания;
  • tblock – максимальное время перехода из рабочего режима в режим блокировки;
  • Tраб – рабочая температура.

Отдельно можно отметить серию как самую быстродействующую, но она значительно проигрывает по уровню входящих напряжений всем остальным. К основным отличиям между сериями TBU также относятся направленность передачи сигналов, комбинация максимальных напряжений и токов блокировки, температурные режимы работы. Двухканальные исполнения актуальны для экономии пространства на плате и удобства монтажа, однако в случае серьезной аварии и при необратимом повреждении одного из каналов замены потребует весь элемент. Поэтому двухканальные исполнения не пользуются широкой популярностью, чего не скажешь про одноканальную двунаправленную серию . Широкий номенклатурный ряд по току и напряжению, низкое сопротивление и промышленный температурный диапазон делают это семейство наиболее популярным в России и в мире. В большинстве типовых схем защиты с применением TBU, рекомендуемых Bourns, используется именно .

Критерии выбора

Несмотря на то, что все семейства TBU преследуют одну и ту же цель – защиту от бросков тока и напряжения, немаловажным является вопрос правильного подбора устройства защиты, так как в современной высокоточной электронике даже незначительное превышение рабочих параметров может привести к разрушительным последствиям.

Алгоритм подбора можно разделить на следующие этапы :

  • Определение пикового значения рабочего тока и максимальной рабочей температуры окружающей среды. На этом этапе необходимо обратиться к графику зависимости тока срабатывания от температуры, который имеется в документации на изделие, чтобы определить значение снижения параметров TBU в конкретных условиях эксплуатации.
  • Определение уровня рабочего напряжения устройства. Выбор TBU следует делать таким образом, чтобы его заявленное напряжение пробоя было самым маленьким среди доступных в семействе, но при этом превышающим нормальное напряжение системы и его допустимые пульсации. Выбранное устройство также должно удовлетворять требования и по нагрузочным характеристикам.
  • Выбор конкретного артикула TBU с максимальным импульсным напряжением (Vimp), большим, чем импульсное напряжение пробоя используемого ограничителя напряжения первой ступени (например газоразрядника). Выбранное TBU-устройство также должно иметь минимальный ток отключения Itrigger выше максимального пикового тока защищаемой системы с учетом компенсации влияния температуры окружающей среды.

В большинстве случаев защищаемые цепи располагают достаточным током для срабатывания TBU. Но если защищаемая цепь имеет высокий импеданс, для гарантированного срабатывания защиты после TBU стоит разместить небольшой лавинный диод, подключенный на землю. Такой подход обеспечивает выполнение устройством TBU своих защитных функций.

Области и примеры применения

Высокое быстродействие позволяет использовать TBU для защиты дорогостоящих чувствительных компонентов электронных схем, а низкое значение емкости и широкий частотный диапазон (до 3 ГГц ) открывают путь в высокоскоростные приложения. TBU широко используются в телекоммуникационном оборудовании, без них не обходятся платы xDSL, комбинированные платы POTS и xDSL, звуковые/VDSL-платы, оборудование для доступа в сеть, оборудование для линий T1/E1 и T3/E3, защита Ethernet-портов, широкополосные модемы и сетевые шлюзы, защитные модули и программаторы, промышленные устройства для управления и контроля, контрольно-измерительное оборудование. При разработке подобных устройств обязательным требованием остается правильный выбор максимального номинального напряжения TBU, которое не должно превышать максимальных рабочих параметров защищаемого устройства. Оптимальная защита сочетает в себе защитное устройство TBU совместно с варистором или газоразрядником. Также нередко после TBU устанавливаются TVS-супрессоры. Говоря о защите телекоммуникационного оборудования, в качестве основного поражающего фактора всегда рассматривают прямые или наведенные разряды молний. Огромная роль здесь отводится первичным средствам гашения: контуру заземления, различным силовым автоматам, камерам искрогашения и прочим компонентам. Но, как правило, остаточные разряды все еще высокой энергии проникают дальше, непосредственно в схемы устройств. Использование многоступенчатой вторичной защиты, в том числе и применение TBU производства компании Bourns, снижает риск серьезного повреждения оборудования многократно или вовсе предотвращает аварии. Защита в подобных ситуациях нужна для всех входящих/выходящих линий: коаксиальных и сетевых разъемов, линий управления и так далее. Даже один незащищенный порт может привести к обширному повреждению всего оборудования.

Также высокой уязвимостью, ввиду своего широкого распространения, отличаются порты RS-232, RS-485 и порты с оптическим входом . Для комплексной защиты RS-232 Bourns предлагает следующую схему на основе TBU-P850 (рисунок 2) или на базе (рисунок 3).

RS-485 является более современным стандартом передачи данных. Несколько терминалов RS-485 могут совместно работать на одной шине. Двойной диод, показанный на схемах ниже, предназначен для обеспечения общего режима работы в диапазоне -7…12 В. Предлагается две топологии защиты, также с использованием TBU-P850 и (рисунки 4 и 5).

Развитие измерительно-контрольных средств автомобильной электроники сделало популярной шину CAN, для защиты которой также есть схема с использованием TBU (рисунок 6).

Весьма популярным способом связи двух устройств с защитой по входу и выходу остается схема с использованием оптической изоляции. Рекомендации по защите с применением TBU показаны на рисунке 7.

Конкурентные преимущества TBU. Соответствие предъявляемым требованиям и международным стандартам

К преимуществам TBU можно отнести:

  • простую и надежную схему защиты;
  • защиту от превышения напряжения и тока в одном корпусе;
  • высокое быстродействие;
  • прецизионное ограничение выходного тока и напряжения;
  • самовосстановление;
  • широкую полосу пропускания без внесения помех в полезный сигнал (до 3 ГГц);
  • малые габаритные размеры в корпусе DFN;
  • соответствие RoHS.

Поскольку, основной сферой использования TBU является защита телекоммуникационных линий, к которым в наше время предъявляются высокие требования по качеству, скорости, уровню вносимых искажений, то и устройства защиты также должны соответствовать целому ряду требований и международных стандартов. Наиболее известными и авторитетными на сегодняшний день являются ITU (International Telecommunications Union) и Telcordia. Bourns участвует в разработке данных стандартов и производит компоненты, целиком и полностью совместимые с опубликованными нормативными требованиями. К слову, устройства TBU превышают требования Telcordia GR-1089 и ITU-T K.20, K.21, K.45 , что дает им запас прочности для будущего роста технологических требований.

Заключение

Всегда стоит помнить о том, что защита цепей – комплексное мероприятие и полагаться на какой-то один тип защиты опасно. TBU производства компании Bourns – «командный игрок» и полностью раскрыть свой потенциал может только при совместном использовании с дополнительными средствами защиты: варисторами, газоразрядниками, TVS-диодами, которые, в свою очередь, также должны быть верно подобраны для правильной координации защиты в целом.

Наиболее популярные исполнения и номиналы TBU всегда можно найти на складах официального дистрибьютора Bourns – компании КОМПЭЛ. Помимо складского запаса, КОМПЭЛ предлагает заказные поставки, бесплатные образцы, спец. цены, техподдержку и проектные поставки для вашего производства.

Литература

  1. https://www.bourns.com/data/global/pdfs/bourns_tbu_short_form.pdf
  2. https://www.bourns.com/ProductLine.aspx?name=tbu
  3. https://www.bourns.com/data/global/pdfs/CP_cell_base_station_appnote.pdf.

Bourns выпускает новые модели высоковольтных PTVS-диодов серий S3, S6 и S10

PTVS (Power TVS) – высокоточные двунаправленные супрессоры для защиты устройств на мощных AC- и DC-линиях от воздействия электростатических разрядов, электромагнитных импульсов, помех коммутации, наведенных ударов молнии и прочего. И если стандартные серии SMAJ и SMBJ представлены на рынке широко, то силовые TVS-решения предлагают немногие. Новые модели PTVS обеспечивают двустороннюю защиту на напряжениях 170…470 В. Нормированы на воздействие стандартных импульсов 8/20 мкс в соответствии с требованиями IEC 61000-4-5. Технология с использованием силикона позволяет добиться низких напряжений фиксации по сравнению с металооксидными варисторами и гарантировать стабильность характеристик с ростом температуры. Основное преимущество PTVS перед варистором проявляется именно на высоких токах — напряжение фиксации на варисторе существенно возрастает вслед за броском тока, в то время как на PTVS-диоде после очень короткого всплеска спадает до паспортного значения и остается фиксированным. Для аналогичных по рабочим характеристикам варистора и PTVS эта разница может отличаться вдвое в пользу PTVS (напомним, что речь идет о сотнях вольт). PTVS серий S3, S6 и S10 выпускаются в корпусах для сквозного монтажа и отвечают требованиям RoHS.

PTVS-диоды – это отличное решение для источников питания телекоммуникационного оборудования и других приложений, чувствительных к мощным помехам и наводкам. Выпуск новых моделей для серий S3, S6 и S10 значительно расширяет область применения PTVS производства Bourns.

Современные мощные переключательные транзисторы имеют очень маленькие сопротивления сток-исток в открытом состоянии, это обеспечивает малое падение напряжения при прохождении через эту структуру больших токов. Это обстоятельство позволяет использовать такие транзисторы в электронных предохранителях.

Например, транзистор IRL2505 имеет сопротивление сток-исток, при напряжении исток-затвор 10В, всего 0,008 Ом. При токе 10А на кристалле такого транзистора будет выделяться мощность P=I² R; P = 10 10 0,008 = 0,8Вт. Это говорит о том, что при данном токе транзистор можно устанавливать без применения радиатора. Хотя я всегда стараюсь ставить хотя бы небольшие теплоотводы. Это во многих случаях позволяет защитить транзистор от теплового пробоя при внештатных ситуациях. Этот транзистор применен в схеме защиты описанной в статье « ». При необходимости можно применить радиоэлементы для поверхностного монтажа и сделать устройство виде небольшого модуля. Схема устройства представлена на рисунке 1. Она рассчитывалась на ток до 4А.

Схема электронного предохранителя

В данной схеме в качестве ключа использован полевой транзистор с р каналом IRF4905, имеющий сопротивление в открытом состоянии 0,02 Ом, при напряжении на затворе = 10В.

В принципе этой величиной ограничивается и минимальное напряжение питания данной схемы. При токе стока, равном 10А, на нем будет выделяться мощность 2 Вт, что повлечет за собой необходимость установки небольшого теплоотвода. Максимальное напряжение затвор-исток у этого транзистора равно 20В, поэтому для предотвращения пробоя структуры затвор-исток, в схему введен стабилитрон VD1, в качестве которого можно применить любой стабилитрон с напряжение стабилизации 12 вольт. Если напряжение на входе схемы будет менее 20В, то стабилитрон из схемы можно удалить. В случае установки стабилитрона, возможно, потребуется коррекция величины резистора R8. R8 = (Uпит — Uст)/Iст; Где Uпит – напряжение на входе схемы, Uст – напряжение стабилизации стабилитрона, Iст – ток стабилитрона. Например, Uпит = 35В, Uст = 12В, Iст = 0,005А. R8 = (35-12)/0,005 = 4600 Ом.

Преобразователь ток — напряжения

В качестве датчика тока в схеме применен резистор R2, чтобы уменьшить мощность, выделяющуюся на этом резисторе, его номинал выбран всего в одну сотую Ома. При использовании SMD элементов его можно составить из 10 резисторов по 0,1 Ом типоразмера 1206, имеющих мощность 0,25Вт. Применение датчика тока с таким малым сопротивление повлекло за собой применение усилителя сигнала с этого датчика. В качестве усилителя применен ОУ DA1.1 микросхемы LM358N.

Коэффициент усиления этого усилителя равен (R3 + R4)/R1 = 100. Таким образом, с датчиком тока, имеющим сопротивление 0,01 Ом, коэффициент преобразования данного преобразователя ток – напряжения равен единице, т.е. одному амперу тока нагрузки равно напряжение величиной 1В на выходе 7 DA1.1. Корректировать Кус можно резистором R3. При указанных номиналах резисторов R5 и R6, максимальный ток защиты можно установить в пределах… . Сейчас посчитаем. R5 + R6 = 1 + 10 = 11кОм. Найдем ток, протекающий через этот делитель: I = U/R = 5А/11000Ом = 0,00045А. Отсюда, максимальное напряжение, которое можно выставить на выводе 2 DA1, будет равно U = I x R = 0,00045А x 10000Ом = 4,5 B. Таким образом, максимальный ток защиты будет равен примерно 4,5А.

Компаратор напряжения

На втором ОУ, входящем в состав данной МС, собран компаратор напряжения. На инвертирующий вход этого компаратора подано регулируемое резистором R6 опорное напряжение со стабилизатора DA2. На неинвертирующий вход 3 DA1.2 подается усиленное напряжение с датчика тока. Нагрузкой компаратора служит последовательная цепь, светодиод оптрона и гасящий регулировочный резистор R7. Резистором R7 выставляют ток, проходящий через эту цепь, порядка 15 мА.

Работа схемы

Работает схема следующим образом. Например, при токе нагрузки в 3А, на датчике тока выделится напряжение 0,01 х 3 = 0,03В. На выходе усилителя DA1.1 будет напряжение, равное 0,03В х 100 = 3В. Если в данном случае на входе 2 DA1.2 присутствует опорное напряжение выставленное резистором R6, меньше трех вольт, то на выходе компаратора 1 появится напряжение близкое к напряжению питания ОУ, т.е. пять вольт. В результате засветятся светодиод оптрона. Откроется тиристор оптрона и зашунтирует затвор полевого транзистора с его истоком. Транзистор закроется и отключит нагрузку. Вернуть схему в исходное состояние можно кнопкой SB1 или выключением и повторным включением БП.

Начиниющие радиолюбители, которых большинство, для сборки регулированного блока питания выбирают схемы попроще. Такую схемку решил сделать и я, так как возможностей достать дорогие детали и настроить сложный БП вряд-ли получится.

Самое основное для любой конструкции корпус. Тут мне повезло досать нерабочий БП ATX от компьютера, куда и будет помещён будущий блок питания.


Разъёмы сзади для сети 220В оставил, а на место кулера прикрутил обычную розетку, так как их постоянно не хватает для массы моих электронных устройств. Короче лишней она не будет.


Печатная плата блока питания простейшая и изготовить её будет легко даже начинающим. В крайнем случае можно вырезать дорожки резаком, а не травить. Для защиты по максимальному току - а это обязательно должно быть в радиолюбительском блоке питания, выбрал схему электронного предохранителя с индикацией перегрузки на светодиоде.


Передняя панель блока питания изготавливается из пластика, текстолита или даже фанеры - кто на что богат. На ней будут крепиться стрелочные индикаторы - вольтметр и амперметр (как впоследствии стало понятно, что это намного лучше и удобней цифровой индикации), регулятор напряжения и кнопки включения и переключения режимов защиты. Я выбрал 0,1 и 1А, но можно расчитать резистор токовой защиты на любое значение.


Ещё на передней панели блока питания будут две клеммы для подключения проводов выхода БП.


Получается вот что-то уже похожее на блок питания. Трансформатор выбираем такой, чтоб он поместился в корпус. Так что если вы идёте его покупать на радиобазаре - сначала замеряйте габариты коробки.


Корпус обклеиваем самоклеющейся плёнкой или красим лаком.


Зелёный светодиод будет светиться при включении БП в сеть, а красный сигнализирует о срабатывании защиты от токовой перегрузки.


Здесь написано как рассчитать шунт для стрелочных индикаторов. А чтоб нанести на шкалу новые значения вольт и ампер, придётся раскрыть их корпуса и аккуратно наклеить бумажки с новыми значениями поверх старых.

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания - сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Схема защиты блока питания

Силовая часть - мощный полевой транзистор - в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока

~~~При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным

~~~Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные - IRF3205, IRL3705, IRL2505 и им подобные.

~~~Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

~~~Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

Комментарии
Защита от короткого замыкания , переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.


Второй транзистор тоже не критичен, в моем случае использован высоковольтный биполярный транзистор серии MJE13003, но выбор большой. Ток защиты подбирается исходя из сопротивления шунта — в моем случае 6 резисторов по 0,1Ом параллельно, защита срабатывает при нагрузке 6-7 Ампер. Более точно можно настроить вращением переменного резистора, таким образом я настроил ток срабатывания в районе 5 Ампер.



Мощность блока питания довольно приличная, выходной ток доходит до 6-7 Ампер, что вполне достаточно для зарядки автомобильного аккумулятора.
Резисторы шунта выбрал с мощностью 5 ватт, но можно и на 2-3 ватт.




Если все сделано правильно, то блок начинает работать сразу, замыкайте выход, должен загореться светодиодный индикатор защиты, который будет гореть до тех пор, пока выходные провода находятся в режиме КЗ.
Если все работает как нужно, то приступаем дальше. Собираем схему индикатора.

Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.

Реализовать схему защиты не сложно, тем более что она очень важна для защиты всех своих устройств от короткого замыкания и перегрузки. Если в приборе по каким-либо причинам случается короткое замыкание это может привести к непоправимым последствиям для него. Чтобы защитить вас от лишних затрат, а прибор от выгорания, достаточно сделать небольшую доработку, по нижеприведенной схеме.

Важно отметить что вся схема построена на комплементарной паре транзисторов. Для понимания расшифруем смысл фразы. Комплементарной парой называют транзисторы с одинаковыми параметрами, но разными направлениями p-n переходов.

Т.е. все параметры напряжения, тока, мощности и прочие у транзисторов абсолютно одинаковые. Отличие лишь проявляется в типе транзистора p-n-p или n-p-n. Также приведем примеры комплементарных пар, чтобы облегчить вам покупку. Из российской номенклатуры: КТ361/КТ315, КТ3107/КТ3102, КТ814/КТ815, КТ816/КТ817, КТ818/КТ819. В качестве импортных прекрасно подойдут BD139/BD140. Реле надо выбирать на рабочее напряжение не менее 12 В, 10-20 А.

Принцип действия:

При превышении определенного порога (порог устанавливается переменным резистором, опытным путем) замыкаются ключи комплементарной пары транзисторов. Напряжение на выходе прибора пропадает и загорается светодиод, свидетельствующий о срабатывании защитной системы прибора.

Кнопка между транзистора, позволяет осуществить сброс защиты (в стационарном состоянии замкнута, т.е. работает на размыкание). Сбросить защиту можно и другим путем, просто выключить и включить блок. Защита актуальна для источников питания или аккумуляторных зарядок.