Схема управления оборотами двигателя постоянного тока. Блоки управления электродвигателями постоянного тока

Управление двигателем постоянного тока в САУ подразумевает либо изменение скорости вращения пропорционально некоторому сигналу управления, либо поддержание этой скорости неизменной при воздействии внешних дестабилизирующих факторов.

Используются 4 основные метода управления, реализующие перечисление выше принципы:

    реостатно-контакторное управление;

    управление по системе «генератор-двигатель» (Г-Д);

    управление по системе «управляемый выпрямитель –Д» (УВ-Д);

    импульсное управление.

Подробное исследование этих способов – предмет ТАУ и курса «Основы электропривода». Мы рассмотрим только основные положения, имеющие непосредственное отношение к электромеханике.

Обычно используются 3 схемы:

    при регулировке скорости n от 0 до nном в цепь якоря включают реостат (якорное управление);

    при необходимости получить n > nном реостат включают в цепь ОВ (полюсное управление);

    для регулирования скорости n < nном и n > nном реостаты включают как в цепь якоря, так и в цепь ОВ.

Перечисленные схемы применяются при ручном управлении. Для автоматического управления используют ступенчатое переключение R ра и R рв с помощью контакторов (реле, электронных коммутаторов).


Если требуется точное и плавное регулирование скорости, число коммутируемых резисторов и элементов коммутации должно быть большим, из-за чего увеличиваются габариты системы, стоимость и снижается надежность.

Регулирование частоты вращения от 0 до по схеме рис. производится регулировкой R в (U гизменяется от 0 до n ном). Для получения скорости двигателя больше nном - изменением R вд (уменьшение тока ОВ двигателя уменьшает его основной поток Ф, что и приводит к увеличению скорости n).

Переключатель S1 предназначен для реверса двигателя (изменения направления вращения его ротора).

Поскольку управление Д осуществляется путем регулирования сравнительно малых токов возбуждения Г и Д, оно легко адаптируется к задачам САУ.


Недостаток такой схемы – большие габариты системы, масса, низкий КПД, поскольку здесь имеется трехкратное преобразование преобразование энергии (электрической в механическую и обратно, и на каждом этапе имеются потери энергии).

Управление по системе «управляемый выпрямитель – двигатель»

Система «управляемый выпрямитель – двигатель» (см. рисунок) похожа на предыдущую, но вместо электромашинного источника регулируемого напряжения, состоящего из, например, трехфазного, двигателя переменного тока и Г=Т, используется управляемый, например, тоже трехфазный тиристорный электронный выпрямитель.

Сигналы управления формируются отдельным блоком управления и обеспечивают требуемый угол открывания тиристоров, пропорциональный сигналу управления Uу.

Достоинства такой системы - высокий КПД, малые габариты и масса.

Недостатком по сравнению с предыдущей схемой (Г-Д) является ухудшение условий коммутации Д из-за пульсаций его тока якоря, особенно при питании от однофазной сети.

На двигатель с помощью импульсного прерывателя подаются импульсы напряжения, модулированные (ШИМ, ВИМ) в соответствии с управляющим напряжением.

Таким образом, изменение скорости вращения якоря достигается не за счет изменения напряжения управления, а путем изменения времени, в течение которого к двигателю подводится номинальное напряжение. Очевидно, что работа двигателя состоит из чередующихся периодов разгона и торможения (см. рисунок).

Если эти периоды малы по сравнению с полным временем разгона и остановки якоря, то скорость n не успевает к концу каждого периода достигать установившихся значений nном при разгоне или n = 0 при торможении, и устанавливается некоторая средняя скорость nср, величина которой определяется относительной продолжительностью включения.

Поэтому в САУ требуется схема управления, назначение которой – преобразование постоянного или изменяющегося сигнала управления в последовательность управляющих импульсов с относительной продолжительностью включения, являющейся заданной функцией величины этого сигнала. В качестве элементов коммутации используются силовые полупроводниковые приборы – .

Электродвигатели, работающие на постоянном токе, используются не так часто, как двигатели переменного тока. Ниже приведем их достоинства и недостатки.

В быту двигатели постоянного тока нашли применение в детских игрушках, так как источниками для их питания служат батарейки. Используются они на транспорте: в метрополитене, трамваях и троллейбусах, автомобилях. На промышленных предприятиях электродвигатели постоянного тока применяются в приводах агрегатов, для бесперебойного электроснабжения которых используются аккумуляторные батареи.

Конструкция и обслуживание двигателя постоянного тока

Основной обмоткой двигателя постоянного тока является якорь , подключающийся к источнику питания через щеточный аппарат . Якорь вращается в магнитном поле, создаваемом полюсами статора (обмотками возбуждения) . Торцевые части статора закрыты щитами с подшипниками, в которых вращается вал якоря двигателя. С одной стороны на этом же валу установлен вентилятор охлаждения, прогоняющий поток воздуха через внутренние полости двигателя при его работе.

Щеточный аппарат – уязвимый элемент в конструкции двигателя. Щетки притираются к коллектору, чтобы как можно точнее повторять его форму, прижимаются к нему с постоянным усилием. В процессе работы щетки истираются, токопроводящая пыль от них оседает на неподвижных частях, ее периодически нужно удалять. Сами щетки нужно иногда перемещать в пазах, иначе они застревают в них под действием той же пыли и «зависают» над коллектором. Характеристики двигателя зависит еще и от положения щеток в пространстве в плоскости вращения якоря.

Со временем щетки изнашиваются и заменяются. Коллектор в местах контакта со щетками тоже истирается. Периодически якорь демонтируют и протачивают коллектор на токарном станке. После протачивания изоляция между ламелями коллектора срезается на некоторую глубину, так как она прочнее материала коллектора и при дальнейшей выработке будет разрушать щетки.

Схемы включения двигателя постоянного тока

Наличие обмоток возбуждения – отличительная особенность машин постоянного тока. От способов их подключения к сети зависят электрические и механические свойства электродвигателя.

Независимое возбуждение

Обмотка возбуждения подключается к независимому источнику. Характеристики двигателя получаются такие же, как у двигателя с постоянными магнитами. Скорость вращения регулируется сопротивлением в цепи якоря. Регулируют ее и реостатом (регулировочным сопротивлением) в цепи обмотки возбуждения, но при чрезмерном уменьшении его величины или при обрыве ток якоря возрастает до опасных значений. Двигатели с независимым возбуждением нельзя запускать на холостом ходу или с малой нагрузкой на валу. Скорость вращения резко увеличится, и двигатель будет поврежден.

Остальные схемы называют схемами с самовозбуждением.

Параллельное возбуждение

Обмотки ротора и возбуждения подключаются параллельно к одному источнику питания. При таком включении ток через обмотку возбуждения в несколько раз меньше, чем через ротор. Характеристики электродвигателей получаются жесткими, позволяющие использовать их для привода станков, вентиляторов.

Регулировка скорости вращения обеспечивается включением реостатов в цепь ротора или последовательно с обмоткой возбуждения.


Последовательное возбуждение

Обмотка возбуждения включается последовательно с якорной, по ним течет один и тот же ток. Скорость такого двигателя зависит от его нагрузки, его нельзя включать на холостом ходу. Но он обладает хорошими пусковыми характеристиками, поэтому схема с последовательным возбуждением применяется на электрифицированном транспорте.


Смешанное возбуждение

При этой схеме используются две обмотки возбуждения, расположенные попарно на каждом из полюсов электродвигателя. Их можно подключить так, чтобы потоки их либо складывались, либо вычитались. В результате двигатель может иметь характеристики как у схемы последовательного или параллельного возбуждения.

Там, где требуется плавное и точное регулирование скорости и вращающего момента электромотора в широких пределах, необходима схема управления двигателем постоянного тока

Сегодня получили распространение две основные схемы управления электродвигателем такого типа: преобразователь-двигатель (тиристорный ТП-Д и транзисторный ТрП-Д варианты) и генератор-двигатель (Г-Д).


В обоих случаях управление моментом и угловой скоростью по направлению и абсолютному значению происходит с помощью регулирования приложеной разности потенциалов к якорю электродвигателя. Напряжение на якоре двигателяв системе Г-Д настраивают изменением силы тока в обмотке возбуждения генератора Iвг. Для этой цели в роли возбудителя генератора используют силовые магнитные усилители, тиристорные или транзисторные преобразователи. В системах ТП-Д U якоря изменяют методом фазового управления коммутацией тиристоров, а в системах ТрП-Д регулируют скважность питающего U пит, то есть с помощью способа широтно-импульсной модуляции (ШИМ).

Основой транзисторных схем является широтно-импульсный преобразователь (ШИП), состоящий из четырех IGBT транзисторов. В диагональ такого IGBT моста подсоединена нагрузка, то есть якорь двигателя. Запитан ШИП от источника постоянного тока.

Существует несколько способов управления ШИП преобразователем по цепи якоря. Самый простой из них – это симметричный метод. При таком управлении в состоянии переключения находятся все четыре IGBT, и на выходе ШИП мы наблюдаем знакопеременные импульсы, длительность которых настраивается входным сигналом. Сам принцип переключения показан на следующем рисунке. Достоинством симметричного метода является его простота, но двухполярное U на двигателе, вызывающее токовые пульсации в якоре, является серьезным минусом. На практике, такие схемы с симметричным управлением используются в основном для управления маломощными двигателями.


Несимметричный способ управления является более совершенным. Он обеспечивает на выходе преобразователя однополярное U вых. Поэтому, в соответствии со схемой выше, переключаются два транзистора Т3 и Т4, при этом Т1 постоянно открыт, а Т2 наоборот закрыт. Для того, чтобы U среднее на выходе преобразователя было нулевым, необходимо чтобы нижний переключающийся транзистор был закрыт. Такой подход тоже не совсем верен, т.к верхние ключи загружены по гораздо больше, чем нижние. При больших нагрузках это может привести к перегреву и повреждению схемы.


Но и с этим недостатком справились, придумав метод поочередного управления двигателем постоянного тока. Здесь как при движении в любую сторонубудут переключаться все ключи. Обязательным условием работы схемы является нахождение в противофазе управляющих напруг IGBT Т1 и Т2 для одной группы и Т3 и Т4 для другой.


В основе этой радиолюбительской разработки лежит принцип работы следящего привода с одноконтурной системой регулирования. Схема управления двигателем постоянного тока состоит из следующих основных частей: - СИФУ - Регулятор - Защита


СИФУ - Система Импульсно Фазового Управления осуществляет синусоидальное преобразование напряжения сети в последовательность прямоугольных импульсов, следующих на регулирующие выводы силовых тиристоров. При включении схемы переменное напряжение номиналом 14 - 16 вольт проходит на мостовой выпрямитель и преобразуется в пульсирующее, служащее не только для питания конструкции, но и для синхронизации работы устройства. Диод D2 не дает сглаживать импульсы емкости С1. Затем импульсы следуют на «детектор нуля» выполненный на операционном усилителе LM324 элементе DA1.1, включенного в режиме компаратора. Пока импульсы отсутствуют, напряжения на прямом и инверсном входах ОУ примерно одинаковые и компаратор сбалансирован.

При прохождении синусойды через точку нуля, на инверсном входе компаратора появляются импульсы, переключающие компаратор, в результате чего на выходе DA1.1 генерируются прямоугольные синхроимпульсы, период следования которых зависит от точки нуля. Посмотрите на осциллограммы, чтоб понять принцип работы. Сверху вниз: КТ1, КТ2, КТ3.


Управление двигателем постоянного тока схема была промоделирована в программе . В архиве с полным вариантом рассматриваемой конструкции имеется файл проекта для этой программы. Можно его открыть и наглядно посмотреть как работает данный узел, а соответственно сделать окончательные выводы об управление двигателем постоянного тока, до начала сборки радиолюбительской самоделки.

Вернемся к работе - синхроимпульсы следуют на интегратор с транзисторным ключом (С4, Q1), где и генерируется пилообразное U. В момент прохождения фазы через точку нуля синхроимпульс отпирает первый транзистор, который разряжает емкость С4. После спада импульса транзистор запирается и осуществляется заряд емкости до прихода следующего синхроимпульса, в результате чего на коллекторе транзистора (осциллограмма КТ4) образуется линейно нарастающее пилообразное напряжение, стабилизированное генератором стабильного тока на униполярном транзисторе T1.

Амплитуда пилообразного напряжения около 9 вольт задается подстроечным сопротивлением RP1. Эта напруга прикладывается к прямому входу компаратора DA1.2. Напряжение задания следует на инверсный вход компаратора DA1.2 и в момент времени, когда амплитуда пилообразного напряжения превышает величину напряжения на инверсном входе, компаратор перебрасывается в противоположное состояние и на его выходе генерируется импульс (осциллограмма КТ4).

Импульс дифференцируется через цепочку пассивных радиокомпонентов R14, C6 и следует на базу второго биполярного транзистора, который благодаря этому открывается и на импульсном трансформаторе образуются импульсы открытия силовых тиристоров. Увеличивая или уменьшая U задания, можно регулировать скважность импульсов в КТ5.


Но никаких импульсов на осциллограмме КТ5 мы не увидим, пока не нажмем тумблер S1. Когда он не нажат, напряжение питания +12в через фронтовые контакты S1 через R12, D3 следует на инверсный вход DA1.2. Так как это U выше U пилы, компаратор закрывается, и импульсы открывающие тиристоры не генерируются.

Для предотвращения аварийных ситуаций и поломки электродвигателя, в случае если не выставлен на «0» регулятор оборотов, в схеме имеется узел разгона на элементах C5, R13 предназначенный для плавного разгона двигателя.

При нажатии тумблера S1 контакты размыкаются и емкость С5 начинает плавно заряжаться, а напряжение на отрицательной обкладке конденсатора приближается к нулю. Напряжение на инвертирующем входе DA1.2 возрастает до величины напряжения задания, и компаратор начинает генерировать импульсы для открытия силовых тиристоров. Время заряда определяется радиокомпонентами C5, R13.

Если в процессе работы двигателя понадобится отрегулировать его обороты в схему добавлен узел разгона и торможения R21, C8, R22. При увеличении или уменьшении напряжения задания, емкость С8 плавно заряжается или разряжается, что исключает резкий «наброс» напряжения на инверсном входе и как следствие исключает резкий бросок оборотов двигателя.

Регулятор применяется для поддержания постоянных оборотов в зоне регулирования. Регулятор выполнен на основе дифференциального усилителя с суммированием двух напряжений: задания и обратной связи. Напряжение задания формируется сопротивлением RP1 и следует через фильтр на компонентах R20, C8, R21, выполняющий функции узла разгона и торможения, поступает на инверсный вход DA1.3. С ростом напряжения задания на выходе DA1.3 линейно снижается U вых.

Выходное напряжение регулятора следует на инверсный вход компаратора СИФУ DA1.2 где, суммируясь с импульсами "пилы", превращается в серию прямоугольных импульсов следующих на электроды тиристоров. При увеличении или уменьшении напряжения задания увеличивается или уменьшается и выходное напряжение на выходе силового узла. На графике отображена зависимость оборотов двигателя от напряжения задания.


Делитель напряжения на резисторах R22, R23 подсоединенный на прямой вход регулятора DA1.3 предназначен для исключения аварийной ситуации при обрыве обратной связи.

При включении привода, тахогенератор генерирует напряжение, пропорциональное оборотам электромотора. Это напряжение идет на вход прецизионного детектора DA1.4, DA2.1 построенного по классической двухполупериодной схеме. С его выхода напряжение следует через фильтр на пассивных компонентах C10, R30, R33 на масштабирующий усилитель ОС DA2.2. Усилитель используется для подгонки напряжения ОС идущего с тахогенератора. Напряжение с выхода DA2.2 попадает на вход DA1.3 и на схему защиты DA2.3.

Сопротивлением RP1 генерируются обороты электродвигателя. При работе без нагрузки, U вых масштабирующего усилителя меньше напряжения на шестом выводе DA1.3, поэтому привод работает как регулятор.

С возрастанием нагрузки на валу, снижается напряжение, снимаемое с тахогенератора и в результате снижается напряжение с выхода, масштабирующего усилителя. Когда этот уровень будет меньше чем на ноге 5 ОУ DA1.3 привод войдет в зону стабилизации тока. Снижение напряжения на неинвертирующем входе DA1.3 снизит напряжения на его выходе, а так как он работает на инвертирующий усилитель DA1.2, это увеличит угол открытия тиристоров и, следовательно, к возрастанию уровня на якоре электродвигателя.

Защита от превышения оборотов собрана на операционном усилителе DА2.3, включенного как компаратор. На его инверсный вход поступает опорное напряжение с делителя R36, R37, RP3. Сопротивлением RP3 регулируется уровень срабатывания защиты. Напряжение с выхода усилителя DA2.2 идет на прямой вход DA2.3.

При превышении оборотов выше номинальных, на прямом входе компаратора превышается порог уставки защиты, определяемой сопротивлением RP3 и компаратор переключиться.

Благодаря наличию в схеме положительной обратной связи R38 приводит к «защелкиванию» компаратора, а диод VD12 не дает сбросится компаратору. При срабатывании защиты, с выхода компаратора через диод VD14 следует на инверсный вход 13 DA1.2 СИФУ, а так как напряжение защиты выше уровня «пилы» произойдет мгновенный запрет выдачи управляющих импульсов на электроды силовых тиристоров.

Напряжение с выхода компаратора защиты DA2.3 отпирает транзистор VT4, из-за чего включается реле Р1.1 и загорается светодиод сигнализирующий об аварии. Снять защиту получится если полностью отключить привод, и, выдержав паузу в 5 - 10 секунд вновь подать на него питание.

Схема управления, а точнее силовая часть управляющего блока представлена на рисунке ниже:

Трансформатор Tr1 используется для питания схемы блока управления. Выпрямитель собран по полумостовой схеме и включает два силовых диода D1,D2 и два силовых тиристора Т1, Т2, а также защитный диод D3. Обмотка возбуждения питается от своего отдельного трансформатора и выпрямителя. Если на двигателе нет тахогенератора, то ОС, для контроля оборотов, можно реализовать следующим образом:

Если применяется токовый трансформатор, то перемычку P1 на схеме блока управления двигателем постоянного тока нужно установить в положение 1-3.

Еще можно применить датчик якорного напряжения:


Датчик якорного напряжения это фильтр – делитель подсоединенный непосредственно к клеммам якоря. Настройка привода осуществляется следующим образом. Сопротивления "Задание" и "Масштабирование Uoc" выкручиваются в среднее положение. Сопротивление R5 датчика якорного напряжения выкручивается на минимум. Включаем привод и выставляем напругу на якоре около 110 вольт. Измеряя напряжение на якоре, начинаем вращать сопротивление R5. В определенный момент изменения, напряжение на якоре начнет падать, это говорит о том, что сработала ОС.

Чертеж печатной платы управления двигателем постоянного тока выполнен в программе и вы легко сможете изготовить печатную плату своими руками методом

Управление двигателем настройка конструкции: начнем с проверки напряжений питания на операционном усилителе DA1, DA2. Микросхемы рекомендуется устанавливать в панельки. Затем проверяем осциллограммы в контрольных точках КТ1, КТ2, КТ3. В точке КТ4. мы должны увидеть пилообразные импульсы, при разомкнутой кнопке.

Подстроечным сопротивлением RP1 выставляем размах «пилы» около 9 вольт. В контрольной точке КТ3 длительность импульса около 1.5 - 1.8ms, если мы этого не видем, то уменьшением сопротивления R4 добиваемся требуемой длительности.

Вращая рычаг RR1 схемы управления двигателем в контрольной точке КТ5 контролируем изменение скважности импульсов от максимума до полного их исчезновения при минимальном сопротивлении RR1. При этом должна изменятся яркость лампочки подключенной к силовому блоку которую мы подключили в качестве нагрузки.

Затем подсоеденяем блок управления к двигателю и тахогенератору. Устанавливаем регулятором RR1 напругу на якоре 40-50 вольт. Сопротивление RP3 должен быть в среднем положение. Измеряя напругу на якоре двигателя, вращаем сопротивление RP3. В определенный момент настройки U на якоре начнет падать, это говорит о том, что сработала обратная связь.

Если используется обратная связь в схеме управления двигателем по току якоря требуется токовый трансформатор, включенный в цепь питания выпрямителя. Схема калибровки трансформатора тока рассмотрена ниже. Подбором сопротивления получить на выходе трансформатора переменное напряжение 2 ÷ 2.5v. Мощность нагрузки RN1 должна равняться мощности двигателя


Помните, что токовый трансформатор без нагрузочного резистора включать не рекомендуется.

Подключаем трансформатор тока к цепи ОС P1 и P2. На время регулировки рекомендуется выпаять диод D12, чтобы не было ложного срабатывания защиты. Осциллограммы в контрольных точках КТ8, КТ9, КТ10 показаны на рисунке ниже.

Дальнейшая регулировка такая же как и в случае с использования тахогенератора.

Данный блок управление двигателем постоянного тока изготавливался своими рукми для расточного станка. Фотографии смотри в архиве по зеленой ссылке выше.

Схема показанная на рисунке ниже способна запускать вращение "L в обоих направлениях, как вперед, так и назад. При разомкнутых контактах переключателей, напряжение на обеих клеммах одинаковое, поэтому он не будет вращаться, тоже самое произойдет если нажать одновременно кнопки.

: Важнейший станок "деревянного" моделиста .

Прежде всего - для чего это нужно. Почти у каждого моделиста имеется самодельный или промышленный электроинструмент с приводом от коллекторного двигателя постоянного тока. При этом обычно такой инструмент не имеет регулятора оборотов или имеется простейшая ступенчатая регулировка. Не буду лишний раз доказывать, что наличие регулятора оборотов в электроинструменте позволяет оптимально подобрать режим для каждой операции, особенно при использовании различных насадок. Кроме того, моделисты часто используют низковольтные нагреватели - паяльники, приспособления для гибки деревянных реек и т. п. При этом с помощью регулятора можно получить оптимальную температуру нагревателя. Моделисту иногда приходится наносить гальванические покрытия, для чего необходим регулируемый источник постоянного тока. Все эти функции способно выполнить устройство, описанное ниже.

При конструировании бормашины встал вопрос о выборе схемы регулятора оборотов. Реостатные схемы регулирования скорости вращения коллекторных двигателей постоянного тока, в том числе с применением силовых транзисторов, на которых падает часть напряжения, обладают низким КПД при малых и средних оборотах. На балластных транзисторных ключах рассеивается значительная тепловая мощность, что ужесточает требования к системе их охлаждения. Поэтому выбор системы регулирования скорости вращения пал на импульсные схемы с изменением ширины прямоугольных импульсов напряжения, подаваемых на обмотку двигателя (широтно-импульсная модуляция - ШИМ). Принцип ШИМ заключается в следующем: напряжение в нагрузку подается импульсами постоянной амплитуды, причем соотношение между шириной импульса и паузы (скважность) регулируется, что эквивалентно изменению напряжения питания на нагрузке. Достоинством этой схемы является ее высокая экономичность и надежность. Управляющий нагрузкой транзистор бывает только либо полностью включен, либо выключен, поэтому он практически не нагревается и его можно устанавливать без теплоотвода.

После анализа различных регуляторов качестве базовой была выбрана схема, опубликованная в журнале (№4/2001., перепечатка из "Hobby Elektronika" №7/01, автор Иштван Кекеш). Регулятор (см.схему) содержит задающий генератор напряжения треугольной формы частотой 2кГц (DA1.1, DA1.4), электронный ключ VT1 и регулятор скважности (DA1.2, DA1.3, R8). На рисунке ниже показаны графики напряжений в типовых точках схемы.

Здесь синим цветом показано напряжение на выходе генератора треугольного напряжения (вывод 1 DA1), красным - напряжение регулировки оборотов с потенциометра R8, зеленым - напряжение на двигателе. Очень наглядно видно, что включение и выключение напряжения на нагрузке происходит в момент совпадения напряжения задающего генератора и напряжения на регулирующем потенциометре. Чем выше управляющее напряжение, тем шире импульс на нагрузке.

В схеме предусмотрена возможность включения двигателя с помощью ножной педали SA2. В моем варианте в качестве педали работает обыкновенный короткоходовый концевой выключатель с нормально замкнутыми контактами (в народе -), лежащий на полу. При выключенном SA1 двигатель работает постоянно, при включенном - только при нажатии на педаль. Благодаря наличию конденсатора C2 пуск двигателя осуществляется плавно, что иногда может быть полезно (при указанной емкости C2 примерно за 1 сек.). Переключатель SA4 служит для реверсирования двигателя. Диод D3 стабилизирует питание регулятора. Питание осуществляется через понижающий трансформатор TV1 и выпрямитель D4. Параметры трансформатора зависят от примененного электродвигателя. В первом приближении напряжение вторичной обмотки трансформатора должно быть равно номинальному напряжению электродвигателя плюс 5 вольт, падающих на выпрямителе и ключевом транзисторе. Для возможности работы в форсированном режиме можно добавить еще процентов 20-30. Расчетный ток вторичной обмотки трансформатора, диодов выпрямителя и ключевого транзистора должны быть больше, чем ток, потребляемый электродвигателем, причем для надежности работы лучше дать запас в 3-5 раз. При напряжении питания менее 20В диод D3 можно исключить. Напряжения, указанные на схеме, соответствуют двигателю 27В 30 Вт.

Большинство элементов схемы смонтировано на печатной плате размером 65Х40 мм. (более тонкой линией показана перемычка) Плата установлена в корпусе на двух трубчатых стойках с винтами М2,5 (см. также схему расположения элементов и шаблон для сверления отверстий). Внутри корпуса смонтированы трансформатор, конденсатор С4, выпрямитель D4. Регулятор оборотов R8, переключатели и разъемы для подключения двигателя и педали смонтированы на лицевой панели, резисторы R13 И R14 смонтированы на R8.

В качестве DA1 можно применить любой универсальный счетверенный операционный усилитель. В оригинале были указаны TL064, TL075, TL084, я применил LM324. Ключевой транзистор применен КТ829А (100В, 8А), для более мощных двигателей можно применить КТ827А (100В, 20А). Диоды D1 и D2 защищают VT1 от выбросов напряжения на индуктивной нагрузке.

При налаживании R13 и R14 не устанавливают, провода от платы припаивают прямо к R8. При правильном монтаже и исправных деталях схема начинает работать сразу. Вращением R8 проверяют регулировку оборотов от нуля до максимума. Если последние не совпадают с крайними положениями R8, необходимо подобрать R13 и R14, чтобы максимум и минимум совпали с крайними положениями регулятора. Возможен вариант, когда схема не будет работать из-за того, что не запускается задающий генератор. В этом случае можно попробовать немного увеличить номинал R4. Для изменения времени плавного пуска можно изменять емкость C2.

В заключение хочу отметить, что потратив всего около $10 и немного свободного времени, можно значительно улучшить характеристики своего электроинструмента. Все вопросы по изготовлению и наладке данного устройства задавайте в