Лучший материал для акустических систем. Из какого материала должна быть акустическая система

Показали, как сделать акустические звукопоглощающие панели для домашней студии своими руками. По словам авторов ролика, несмотря на DIY, самодельные аксессуары прекрасно подходят для любой студии звукозаписи, а стоимость одной панели составляет порядка $26 (может быть и дешевле).

Планирование

Прежде чем браться за производство панелей, нужно определиться с двумя вещами: количеством панелей и их местом установки.

Один из самых популярных вариантов расположения такой - две панели слева от точки прослушивания, две справа. Суть такого размещения в том, чтобы погасить ненужное распространение звука как можно раньше, в месте его первого удара об окружающее пространство.

Материалы и инструменты

Чтобы сделать акустическую звукопоглощающую панель, потребуется:

  • Древесина (панели из ПВХ, фанера или аналоги). Из древесины будет изготовлены рамки панелей, их корпус. Так как дерево не будет видно после установки, авторы говорят, что для производства панелей можно купить самую дешевое дерево. Если не уверены в выборе, посоветуйтесь с продавцом в строительном магазине.
  • Утеплитель/наполнитель (Rockwool). С помощью этих материалов будет происходить поглощение звука. Одним из самых популярных выборов считается наполнитель Owens Corning 703 (фактически, обыкновенная минеральная вата), но так как в России найти его практически нереально, то подойдет любая продукция Rockwool. Чтобы сделать правильный выбор стоит обратиться к таблице звукопоглощения .
  • Ткань. Подойдет любая ткань и текстиль, любой расцветки по вашему вкусу. Ткань не участвует в процессе поглощения, а выступает в роли барьера для звукопоглотителя, предотвращающего его выпадение из конструкции.

Из инструментов понадобятся пила, молоток, отвертки или шуруповерт, степлер (скобозабивной пистолет), а также комплект саморезов и гвоздей.

Сборка

Размер и форма панелей могут быть любыми, в зависимости от того, насколько большую область в помещении вы хотите закрыть. Авторы видео не стали изобретать велосипед и сделали прямоугольные панели.

Аккуратно распилите дерево и сделайте корпус панели (саморезы и гвозди - ваши друзья). Затем поместите ткань внутрь корпуса, следом положите наполнитель, а потом натяните ткань поверх. Закрепите текстиль с помощью степлера.

Каркас звукопоглощающей панели

Как установить звукопоглощающие панели

Звукопоглощающие панели нужно разместить в местах «первого контакта» звука с комнатой. Чтобы найти такие места, потребуется помощь друга.

Сядьте в точке прослушивания напротив своего студийного оборудования. Выдайте своему другу зеркало или любую другую отражающую поверхность. Попросите друга двигаться вдоль стены за вашим студийным столом влево: место, где в зеркале появится отражение левого студийного монитора, и есть точка первого контакта для установки первой звукопоглощающей панели. Вторую панель нужно установить там, где в отражении появится правый студийный монитор. Повторите те же самые действия для поиска места установки панелей с правой стороны.

Найти место для установки панелей можно и самому при помощи длинной палки и небольшой карманного зеркала. Методика действий аналогично, только вместо друга с зеркалом вы будете использовать палку.

При установке панелей не забудьте оставить немного места между самой панелью и стеной - это создаст специальный воздушный карман, который улучшит звукопоглощение. Чем больше карман - тем лучше.

Вместо заключения

По данным интернет-магазина Леруа Мерлен , самый дешевый лист фанеры 76×76 см обойдется в 211 рублей (цены приведены для Москвы и Московской области). Одного листа хватит на 1,5-2 панели при экономном использовании материалов. Стоимость изоляции Rockwool составляет 653 рубля за упаковку (Rockwool Лайт Баттс Скандик 100 мм, 4.32 м2), которой вполне хватит на 4 панели. Самая бюджетная портьерная ткань для закрепления конструкции и создания барьера обойдется в 120 рублей за погонный метр. Упаковка саморезов обойдется в 150 рублей, еще 26 рублей будет стоить пачка скоб для степлера.

Материал Количество, шт. Стоимость за штуку, руб. Сумма, руб.
Фанера ФК шлифованная 12x760х760 мм, сорт 3/4 2 211 422
Изоляция Rockwool Лайт Баттс Скандик 100 мм, 4.32 м2 1 653 653
Ткань 1 п/м 280 см тергалет 10 120 1200
Саморезы по дереву 3.5x41 мм, 1 кг 1 150 150
Скоба для степлера 53 тип 14 мм 1000 шт. 1 26 26
ИТОГО: 2451

При покупке материалов с запасом (2 листа фанеры, 10 п/м ткани и т. д.) можно собрать 4 звукопоглощающие панели за 2 500 рублей. Подсчет очень грубый, но при таких суммах дополнительная тысяча рублей не играет особой роли. При средней цене одной заводской панели в районе 3 000-5 000 рублей выгода от самостоятельного изготовления вполне очевидна.

Всем ценителям качественного звука рано или поздно приходится сталкиваться с нелегкой проблемой выбора акустической системы - колонок. Для того чтобы приобрести идеальное по соотношению цена-качество устройство, необходимо обращать внимание не только на декларируемые производителем технические характеристики, но и на материал, из которого изготовлены колонки. Во-первых, потому, что материал оказывает влияние на сам звук, а во-вторых, половину стоимости акустической системы составляет именно стоимость корпуса. Так что же звучит лучше: акустика из дерева, из пластика или металла?

Из какого материала должна быть акустическая система

Виды акустических систем

Акустическая система - важнейший компонент самой различной аудиотехники. Ее назначение состоит в том, чтобы как можно качественнее преобразовать электрический импульс в звуковой сигнал. В зависимости от соединения с усилителем акустику принято делить на активную (усилитель встроен в систему) и пассивную (усилитель внешний). По своим габаритам акустические системы (АС) бывают полочные и напольные. В свою очередь, они также делятся на ценовые категории - бюджетные, Hi-Fi и Hi-End классов.

В особый ряд выделяются всепогодные системы, способные работать в самых экстремальных условиях: на улице, под дождем, при повышенных и пониженных температурах, а также акустика категории Lifestyle, ориентированная на сочетание эксклюзивного дизайна и качественного звука.

Чем меньше искажений - тем лучше

Несмотря на все деления и градации, требования, предъявляемые к различным акустическим системам, практически идентичны. Если колонки используются при просмотре видеоматериалов, то их главная задача - достоверная передача голосов героев, музыки кино и всех аудиоэффектов. Самые же жесткие требования предъявляются к устройствам, предназначенным для прослушивания музыки: чем меньше искажений - тем лучше.

В идеале АС должна обладать достаточной мощностью, чтобы гарантировать минимум звуковых погрешностей, воспроизводить полосу звуковых частот, доступную человеческому уху (от 20 Гц до 20 000 Гц), точно передавать звуковую сцену - как при прослушивании стерео, так и многоканального звука - и соответствовать размерам помещения по акустическому давлению, чаще называемого громкостью. Наконец, акустика должна удовлетворять эмоциональные и эстетические запросы покупателя, как своим звуком, так и своим видом.

Жесткий корпус

Что же больше всего влияет на качество звучания акустической системы? Конечно, динамики и фильтры - одни из важнейших составляющих. Однако без корпуса, изготовленного из высококачественного материала с соблюдением всех технологических норм и параметров, сложно представить высококлассную аппаратуру. «Тело» колонки должно быть достаточно жестким, чтобы обеспечивать хорошее сочетание поглощения/отражения звуковых волн определенной частоты и мощности.

Производители АС используют самые разнообразные материалы для их создания. Например, колонки с корпусом из стекла, предлагаемые компанией Waterfall (модели Waterfall Angel, Waterfall Atabasca, Waterfall Victoria), создают визуальный эффект водопада, а у оригинальных акустических систем открытого типа Jamo R909 от Хенрика Мортинсена корпуса нет вообще. Однако основными материалами для производства все же являются пластик, дерево, а также металл.

Пластик

Применяется довольно давно. Возможность выпуска колонок различной формы и низкая себестоимость сделали этот материал наиболее часто используемым в производстве техники бюджетных категорий, особенно в сегменте, обслуживающем персональные компьютеры. Однако у таких колонок есть ряд недостатков: многочисленные огрехи в звучании, дребезжание на средней и высокой громкости, среднечастотные резонансы.

Вместе с тем крупные производители звуковых систем предлагают потребителям высококлассную акустику с корпусами из пластика. Например, модели DM602 S3 и DM601 S3 от компании B&W, модель Q 8S от KEF, а немецкая фирма Bell-Audio запатентовала технологию изготовления корпусов из двухслойного монолитного пластика, по своим свойствам не уступающего двадцати слоям карельской березы: модели Bell V2.300 и Bell C2-200. Следовательно, при выборе АС нужно обращать внимание на качество пластика, из которого изготовлен корпус, но не ставить знак равенства между пластмассовым «телом» и плохим звуком.

Дерево

Этот материал считается лучшим для производства акустических систем. Однако цельное дерево применяется довольно редко и только в элитных сегментах. Связано это с трудоемкостью процессов обработки. В идеале сырье должно отбираться еще на стадии вырубки, выдерживаться длительный срок, сохнуть естественным путем, без искусственного ускорения. Многие операции производятся вручную. Поэтому говорить о доступности этого материала не приходится.

Компания Bösendorfer, например, изготавливает из цельного дерева не только свои знаменитые рояли, но и панели для акустических систем (Series 1, Series 2, Series 7). Краснодеревщики фирмы тщательно отбирают и вручную обрабатывают материалы для отделки каждой колонки. А компания Sonus faber позиционирует свою акустику как музыкальный инструмент, поэтому серия Guarneri Memento, посвященная памяти великого музыкального мастера, изготовлена из массива клена, высушенного естественным образом в течение нескольких лет. Но все же чаше всего при производстве деревянных корпусов применяется фанера, ДСП (древесно-стружечная плита) и МДФ (древесно-волокнистая плита средней плотности).

Фанера. Высококачественная фанера, как правило, многослойная - 12 слоев и более. Обладает хорошими поглощающими свойствами, легче ДСП и МДФ, мало подвержена расслоению. Такая фанера используется фирмой Outline в серии сабвуферов Victor и в модели SM 18, представленной в серии BEAT. Однако фанера - дорогостоящий материал, что делает его недоступным для массового производства.

Акустическая система из пластика

ДСП. Значительно дешевле цельного дерева и фанеры. Но это не единственное ее преимущество. Плиты толщиной более 16 мм обладают высокой плотностью, что способствует уменьшению резонансов корпуса. Благодаря своей структуре ДСП не привносит собственных призвуков. Проблема расслаивания и впитывания влаги, которым подвержена древесноволокнистая плита, успешно решается с помощью специальной окраски или облицовки различными материалами. Учитывая доступность и хорошие акустические характеристики, используется многими производителями. В частности, фирма Gemme Audio применяет ДСП для изготовления высококачественных акустических систем, например таких, как модели AN-S/L и AN-K/LX.

МДФ. Наиболее распространенный материал. Появился в результате улучшения технологий, которые применялись при производстве ДСП. МДФ изготавливается из высушенных древесных волокон, обработанных синтетическими связующими веществами и сформированных в виде ковра с последующим горячим прессованием, облицовывается натуральным или синтетическим шпоном. Несмотря на простую технологию получения и обработки, плиты средней плотности могут превосходить дерево по устойчивости к механическим повреждениям и влагостойкости.

Главными достоинствами МДФ являются хорошее поглощение звуковых колебаний и обеспечение механической жесткости корпуса колонки. Этим объясняется частота применения в производстве колонок различной ценовой категории. Примером применения этого материала могут служит следующие модели АС: ABS530T фирмы BBK, сабвуфер ASW855 от B&W и XQ Series компании KEF.

Металл

Чаще всего это алюминий. Применяют, как правило, его сплавы. Они обеспечивают хорошие механические качества: жесткость, плотность и легкость. По мнению ряда специалистов, алюминий позволяет уменьшить резонанс и улучшить передачу высоких частот звукового спектра. Кроме того, на воздухе «летучий металл» покрывается тонкой бесцветной пленкой, защищающей его от окисления. Все эти качества способствуют росту интереса к алюминию со стороны фирм-производителей. Особенно привлекателен он для изготовления всепогодных систем.

Его характеристики позволяют воплотить в жизнь новейшие дизайнерские решения. Например, американская компания American Acoustic Development LLC в своей Lifestyle серии изготавливает корпуса колонок, которые обеспечивают высокие стандарты звучания. Однако многие аудиофилы и профессионалы отмечают как недостаток непривычное «металлическое» звучание таких систем.

Слушайте сами, решайте сами

Можно сказать, что ни один из видов рассмотренных материалов, используемых при изготовлении акустических систем, сам по себе не обеспечивает высококлассного звучания. Огромную роль тут играет соблюдение всех технологических параметров при производстве и сборке корпуса, настройки и доводки электронных компонентов акустической системы. Известность торговой марки не всегда гарантирует, что данная акустика подойдет именно Вам.

Как правило, при покупке АС потребителю недоступно сложное оборудование, позволяющее произвести замеры и объективно оценить качество звука. Поэтому при выборе необходимо ориентироваться, прежде всего, на личное эмоциональное восприятие. Прочувствуйте, сможете ли вы слиться с этой акустической системой в единое целое, сможет ли она переместить вас в волшебный мир звуков, вы можете также посоветоваться с экспертом и попробовать вместе с ним вслушаться в голос той или иной колонки, и удачного вам выбора!

Заметки

по построению акустических систем с использованием современных материалов

Если расчет АС достаточно полно освещен в литературе (Эфрусси, Виноградова, Алдошина), то описанные там материалы устарели и малоэффективны в сравнении с имеющимися на сегодняшний день. Анализируя современное состояние рынка материалов, в основном автомобильного и строительного назначения, я обобщил имеющиеся данные и сделал следующие выводы:

1. Виброизоляция стенок ящика АС.

Единственным пригодным для использования в домашней акустике из автомобильных материалов является BIMAST, лучше марки SUPER. Листы 0,6х0,9 м (упаковка 5 штук) выпускаются группой компаний «Стандартпласт»: http://www. *****

Этот материал толщиной 3-4 мм позволяет уменьшить толщину стенок в 2 раза. Однако это справедливо для тонких стенок (8-10 мм), где это особенно актуально.

Естественно, что для стенки из МДФ толщиной 32 мм уменьшение вибраций будет несущественным. К тому же, вибропоглощение МДФ выше, чем ДСП, и не сравнимо выше фанеры, дерева (до 4-х раз) и иных материалов.

Потому нецелесообразно делать толстый деревянный корпус с дополнительной виброизоляцией вместо корпуса из МДФ обычной толщины (для полочной АС обычной я считаю 16 мм).

Нанесение анахронизмов вроде герлена представляется сомнительным ввиду нетехнологичности нанесения его необходимой толщины (4-6 мм) и меньшей эффективности ввиду однослойной структуры.

Корпуса из мрамора вообще не имеют виброизолирующих свойств, так как мрамор не имеет упругих свойств, позволяющих превращать акустическую энергию в тепловую.

Все виброизолирующие материалы эффективны от вибраций, в первую очередь от ударных шумов. Т. е. в первую очередь на НЧ, где мощность их существенна.

Но на НЧ слух не может локализовать источник звука, поэтому и важность виброизоляции не велика: нет особой разницы, излучает звук диффузор или задняя стенка корпуса.

В проектируемых корпусах гасить вибрации лучше всего построением переборок. Теоретически, поставленная посередине панели переборка увеличивает прочность в 4 раза. Удобным способом укрепления, особенно готовых АС, являются распорки. Лучшим способом укрепления ящика АС является сотовая ячеистая система переборок, так как она еще дополнительно позволяет корпусные резонансы ослабить путем увода их вверх, где они легко гасятся звукопоглощающими материалами.

Встречающиеся в описаниях АС способы виброизоляции стенок ленолиумом идут со времен книги Эфрусси (1971 год). Однако линолеум тогда был совершенно иным и всего одного сорта; простая рекомендация виброизоляции современным линолеумом по крайней мере некорректна по отношению к желающим повторить конструкцию. Покупка ленилеума поставит их в тупик: какой брать? – коммерческий, полукоммерческий, домашний? – толщиной от 1 до 4 мм? - гомогенный или гетерогенный? –может вообще взять натуральный линолеум, или лучше токопроводящий, или антисептический ? К тому же укладка на пол его производится на специальный виброгасящий рулонный материал (подложку) - вспененный полиэтилен или полиуретан, пробковое покрытие). Так же нельзя использовать в качестве виброгасящего материала резину, в том числе пористую.

2. Звукопоглощающие материалы.

Это высокопористые, иначе говоря - материалы с открытой и как можно более мелкой структурой. Типичные размеры волокон стекловатных и минераловатных (базальтовых) звукопоглощающих плит имеют размеры 2-6 мкм. Диапазон их наибольшей эффективности начинается с 500 герц, на 50-100 герц поглощение совсем низкое. Однако в АС поглощение на столь низких частотах нас не интересует (а в случае построения, к примеру, помещения с заданными акустическими свойствами – студии, например, пришлось бы применять панели-сэндвичи). А не интересует потому, что звукопоглощение на НЧ портит качество баса, делает его затянутым. Происходит это вследствие снижения добротности АС на НЧ. Частицы материала с окружающим их воздухом следуют за диффузором, виртуально увеличивая его массу. Звукоизолирующие (и близкие к ним утеплительные материалы) непригодны для использования в АС по причине низкого коэффициента звукопоглощения. К непригодным для использования относятся все виды полиуретанов – от пенопласта до поролона. Предлагаемые в некоторых публикациях разминания поролона для открытия пор различными способами несостоятельны, для этой цели есть другие материалы.

Лучшими являются:

Тонкошерстный войлок. Эффективность 8-10 мм войлока сравнима с 2-3 см ваты. В корпусе через некоторое время заведется моль. Ту же участь ждет тонкорунную овечью шерсть, обладающую так же хорошими свойствами, часто используемую и предлагаемую, к примеру фирмой Visaton: http://sound. *****/

Альтернативой является стекловолоконный войлок.

Специальные звукопоглощающие современные материалы используются преимущественно в потолочных плитах, реже – стенных панелях (маты и сэндвичи из фанеры или гипрока и минваты):

фирма «PAROC» выпускает акустические декоративные негорючие панели на основе минеральной ваты со средней плотностью 80 кг/куб (панели Parmitex, Poyal, Akusteri, Аku).

Фирма «ISOVER» выпускает окрашенные стекловолокнистые акустические плиты группы AKUSTO, имеющие стеклотканевое покрытие. Это плиты из стекловолокна толщиной 30 и 50 мм.
Фирма ECOPHON выпускает акустические потолочные и настенные панели, изготовленные из стекловаты повышенной плотности (средняя плотность - более 80 кг/куб. м), толщиной 12, 20, 40 мм.
Фирма «KARHULA», фирма «AHLSTROM». Плиты имеют среднюю плотность 150 кг/куб. м, а плиты в 30 мм - 75 кг/куб. м.
Можно использовать минеральную вату, обернутую в стеклоткань (маты). Она является акустически прозрачной и позволит избежать дополнительных локальных провалов и выбросов на кривой коэффициента поглощения.

Вата. Эффективный вид – более плотный и мелкий – то есть синтетическая хирургическая вата. Также должна укладываться в матах. Чтобы избежать дополнительных экстремумов поглощения матов, материал для их шитья нужно брать звукопрозрачный: стеклоткань, укрывные материалы для почвы, подкладочные материалы для одежды – все они имеют крупную ячеистую структуру.

Теоретически, звукопоглощение в районе НЧ от 250 герц и ниже можно увеличить, относя звукопоглощающие панели на четверть волны от стенки АС. Однако, посчитав длину волны хотя бы 100 герц (332/100=3,32 метра), нетрудно прийти к выводу о необдуманности встречающихся в сети советов по отнесению материала от стенки.

При том, что увеличение эффективности поглощения требуется на НЧ, а на ВЧ с 2-3 кГц уже и не требуется, так как перед НЧ динамиком стоит фильтр.

3. Стоячие волны, связанные с ними резонансные пики на АЧХ.

Они возникают на частоте 168/L (длина стенки в метрах). Если две стенки имеют равную длину – еще хуже, так как энергия резонансов двух плоскостей сложится. Потому не следует делать стенки, кратные друг другу по размерам. Например соотношение длины стенок 1: 1,5: 2,4 будет удачным. Если возникает стоячая волна, то у крайних стенок будут максимумы, а посередине – минимум.

Вывод: поставив переборку или расположив мешок звукопоглотителя не по центру ящика, можно дополнительно получить подавление стоячей волны (резонанса), а не только звукопоглощения.

Раньше колонки представляли собой обыкновенные рупорные громкоговорители и не имели корпуса как такового. Все изменилось, когда в 20-х годах XX века появились динамики с бумажными диффузорами.

Производители начали изготавливать крупные корпуса, которые вмещали в себя всю электронику. Однако вплоть до 50-х годов многие производители аудиоаппаратуры не закрывали корпуса колонок полностью – задняя часть оставалось открытой. Это было связано с необходимостью охлаждения электронных компонентов того времени (ламповое оборудование).

Задача корпуса колонок – контроль акустической среды и удержание динамиков и других компонентов системы. Уже тогда было замечено, что корпус способен оказывать серьезное влияние на звучание громкоговорителя. Поскольку передняя и задняя части динамика излучают звук с разными фазами, то возникала усиливающая или ослабляющая интерференция, что приводило к ухудшению звука и появлению эффекта гребенчатой фильтрации.

В связи с этим начались поиски способов улучшения качества звучания. Для этого многие стали исследовать естественные акустические свойства различных материалов, пригодных для изготовления корпусов.

Волны, отраженные от внутренней поверхности стенок корпуса колонок, накладываются на основной сигнал и создают искажения, интенсивность которых зависит от плотности используемых материалов. В связи с этим часто оказывается, что корпус стоит гораздо дороже компонентов, заключенных в нем.

При производстве корпусов на крупных фабриках, все решения касательно выбора формы и толщины материалов принимаются на основании расчетов и тестов, однако Юрий Фомин, звукоинженер и инженер-конструктор акустических систем, чьи разработки лежат в основе мультимедийных систем под брендами Defender, Jetbalance и Arslab, не исключает, что даже в отсутствие специальных музыкальных знаний и большого опыта работы в аудиоиндустрии можно сделать что-то, близкое по характеристикам к «серьезному» Hi-Fi.

«Надо брать готовые разработки, которыми инженеры делятся в сети, и повторять их. Это 90% успеха», – отмечает Юрий Фомин.

При создании корпуса акустической системы следует помнить, что, в идеале, звук должен поступать только из динамиков и специальных технологических отверстий в корпусе (фазоинвертор, трансмиссионная линия) – нужно позаботиться, чтобы он не проникал через стенки колонок. Для этого рекомендуется выполнять их из плотных материалов с высоким уровнем внутреннего звукопоглощения. Вот несколько примеров того, из чего можно собрать корпус для динамиков.

Древесно-стружечная плита (ДСП)

Это доски, сделанные из спрессованной древесной стружки и клея. Материал обладает гладкой поверхностью и неплотной рыхлой сердцевиной. ДСП хорошо гасит вибрации, однако пропускает через себя звук. Плиты легко скрепляются клеем для дерева или монтажным клеем, однако их края имеют тенденцию крошиться, что немного усложняет работу с материалом. Также он боится влаги – при нарушении производственных процессов легко её впитывает и разбухает.

В магазинах продают доски разной толщины: 10, 12, 16, 19, 22 мм и так далее. Для небольших корпусов (объемом меньше 10 литров) подойдет ДСП толщиной 16 мм, а для корпусов большего размера следует выбрать доски толщиной 19 мм. ДСП можно облицовывать: обклеивать пленкой или тканью, шпаклевать и красить.

Древесно-стружечная плита используется при создании акустической системы Denon DN-304S (на фото выше). Производитель выбрал ДСП потому, что этот материал является акустически инертным: колонки не резонируют и не окрашивают звук даже при высокой громкости.

Облицованная ДСП

Это ДСП, облицованная декоративными пластиками или шпоном с одной или с двух сторон. Плиты с деревянной облицовкой скрепляются обычным клеем для дерева, однако для ДСП, облицованной пластиком, придется покупать специальный клей. Для обработки срезов доски можно воспользоваться кромочной лентой.

Столярная плита

Популярный строительный материал из реек, брусков или других наполнителей, которые оклеены с двух сторон шпоном или фанерой. Плюсы столярной плиты: относительно малый вес и простота обработки краев.

Ориентированно-стружечная плита (ОСП)

ОСП – это доски, спрессованные из нескольких слоев тонкой фанеры и клея, узор на поверхности которых напоминает мозаику желтого и коричневого цветов. Сама поверхность материала неровная, но ее можно отшлифовать и покрыть лаком, поскольку текстура дерева придает этому материалу необычный вид. Такая плита обладает высоким коэффициентом звукопоглощения и устойчива к вибрациям.

Также стоит отметить, что благодаря своим свойствам ОСП используется для формирования акустических экранов. Экраны необходимы для создания комнат прослушивания, где пользователи могут оценить звучание акустических систем в практически идеальных условиях. Полосы из ОСП крепятся на определенном расстоянии друг от друга, образуя тем самым панель Шредера. Суть решения заключается в том, что закрепленная в определенных точках полоса под воздействием акустической волны расчетной длины начинает излучать в противофазе и гасит ее.

Древесноволокнистая плита средней плотности (МДФ)

Сделанный из древесной стружки и клея, этот материал более гладкий, чем ОСП. Благодаря своей структуре МДФ хорошо подходит для изготовления дизайнерских корпусов, поскольку легко поддается распилу, – это упрощает стыковку деталей, скрепляемых между собой при помощи монтажного клея.

МДФ можно облицовывать, шпаклевать и красить. Толщина плит варьируется от 10 до 22 мм: для корпусов колонок объемом до 3 литров будет достаточно доски толщиной 10 мм, до 10 литров – 16 мм. Для больших корпусов лучше выбрать 19 мм.

Если при выборе материала для изготовления корпусов акустических систем отбросить в сторону звуковые аспекты, то останутся три определяющих параметра: низкая стоимость, простота обработки, простота склеивания. МДФ как раз обладает всеми тремя. Именно невысокая стоимость и «податливость» МДФ делают его одним из самых популярных материалов для изготовления колонок.

Фанера

Этот материал сделан из спрессованного и склеенного тонкого шпона (около 1 мм). Для повышения прочности фанеры слои шпона накладываются так, чтобы волокна древесины были направлены перпендикулярно волокнам предыдущего листа. Фанера – лучший материал для подавления вибраций и удержания звука внутри корпуса. Склеить фанерные доски между собой можно обычным клеем по дереву.

Шлифовать фанеру сложнее, чем МДФ, поэтому выпиливать детали нужно как можно точнее. Среди достоинств фанеры стоит выделить её легкость. По этой причине из неё часто делают кейсы для музыкальных инструментов, ведь достаточно обидно отменять концерт из-за того, что музыкант надорвал спину.

Именно этот материал применяется компанией Penaudio для производства напольной акустики – она использует латвийскую фанеру, которая изготавливается из березы. Многим нравится то, как выглядит обработанная березовая фанера, особенно после покрытия лаком, – это придает корпусу уникальности. Этим и пользуется компания: поперечные слои фанеры стали своеобразной «визитной карточкой» Penaudio.

Камень

Чаще всего используются мрамор, гранит и сланец. Сланец – самый подходящий материал для изготовления корпусов: с ним достаточно просто работать из-за его структуры, и он эффективно поглощает вибрации. Главный недостаток – необходимы специальные инструменты и навыки обработки камня. Чтобы как-то упростить работу, возможно, имеет смысл изготовить из камня только переднюю панель.

Стоит отметить, что для установки колонок из камня на полку, вам может понадобиться мини-кран, да и сами полки должны быть достаточно прочными: вес каменной аудиоколонки достигает 54 кг (для сравнения, колонка из ОСП весит около 6 килограмм). Такие корпусы серьезно улучшают качество звука, но их стоимость может оказаться «неподъемной».

Колонки из цельного куска камня делают ребята из компании Audiomasons. Корпусы вырезаются из известняка и весят порядка 18 килограмм. По заявлениям разработчиков, звучание их продукта придется по вкусу даже самым искушенным меломанам.

Оргстекло/стекло

Можно сделать корпус для динамиков из прозрачного материала – это действительно круто, когда видно «внутренности» колонки. Только здесь важно помнить, что без должной изоляции звук будет ужасным. С другой стороны, если вы добавите слой звукопоглощающего материала, прозрачный корпус перестанет быть прозрачным.

Неплохим примером акустической hi-end-аппаратуры из стекла может служить Crystal Cable Arabesque. Корпуса техники Crystal Cable изготавливаются в Германии из полос стекла толщиной 19 мм со шлифованными гранями. Детали скрепляются между собой невидимым клеем в вакуумной установке, дабы избежать появления пузырьков воздуха.

На выставке CES-2010, проходившей в Лас-Вегасе, обновлённые Arabesque завоевали все три награды в области Инноваций. «До сих пор ни одному производителю техники не удавалось добиться настоящего hi-end-звучания от акустики, изготовленной из такого сложного материала. – писали критики. – Компания Crystal Cable доказала, что это возможно».

Клееная древесина/дерево

Из дерева получаются хорошие корпуса, однако здесь нужно учитывать важный момент: дерево имеет свойство «дышать», то есть оно расширяется, если воздух влажный, и сжимается, если воздух сухой.

Так как деревянный брусок проклеивается со всех сторон, в нем создается напряжение, что может привести к растрескиванию древесины. В этом случае корпус потеряет свои акустические свойства.

Металл

Чаще всего для этих целей используется алюминий, точнее – его сплавы. Они легкие и жесткие. По мнению ряда специалистов, алюминий позволяет уменьшить резонанс и улучшить передачу высоких частот звукового спектра. Все эти качества способствуют росту интереса к алюминию со стороны фирм-производителей аудиоаппаратуры, и его используют для изготовления всепогодных акустических систем.

Существует мнение, что изготовление цельнометаллического корпуса – не самая хорошая идея. Однако стоит попробовать сделать из алюминия верхние и нижние панели, а также перегородки жесткости.

По материалам: geektimes.ru

Качество звука, которое приемлемо и предпочтительно для слуха, почти всецело зависит от того, к чему слушатель привык.

Очень немногие люди с натренированным слухом могут судить о качестве звука с разумной точностью и в объективных выражениях.

Наиболее слабым звеном звукового тракта чаще всего бывает акустическая система. И это не случайно. Спроектировать ее — технически очень сложная задача, связанная со многими физическими ограничениями. Главной проблемой обычно является воспроизведение наинизших частот звукового диапазона. На этих частотах громкоговоритель должен излучать звуковые волны достаточно большой длины. Если на частоте 300 Гц длина звуковой волны составляет немногим более метра, то на частоте 30 Гц она составляет уже 11 метров. Диффузор громкоговорителя, двигаясь вперед, создает волну сжатия. Но в то же самое время на задней стороне диффузора возникает волна разряжения, и если скорость движения диффузора невелика, то воздух просто перетекает от передней стороны диффузора к задней, не создавая звуковой волны в окружающем пространстве. Возникает так называемое акустическое короткое замыкание.

Самый простой способ улучшить воспроизведение низких звуковых частот — поместить головку громкоговорителя на акустический экран — щит большого размера. Экран эффективно действует до тех пор, пока расстояние от передней стороны диффузора до задней, измеренное в обход края экрана, будет больше половины длины звуковой волны, т.е. для упомянутой нами частоты 30 Гц нужен экран с размером стороны 5,5 метров. Конечно, если очень хочется реально воспроизвести эту частоту, можно просверлить отверстие в стене, разделяющей две смежные комнаты, вставить в это отверстие головку громкоговорителя. Ну а если серьезно? Попробуем загнуть края экрана. Получится коробка без задней стенки. Можно сделать коробку побольше, а те низкие частоты, которые все-таки воспроизводятся плохо, "поднять" в усилителе звуковой частоты. Так, в свое время, делали, чтобы понизить диапазон воспроизводимых частот до 70 - 60 Гц.

Современные акустические системы изготавливаются с закрытой задней стенкой и обрабатываются внутри звукопоглощающим материалом. Таким образом устраняется акустическое короткое замыкание на низких и улучшается качество воспроизведения на средних частотах. Однако низкий К.П.Д. головки громкоговорителя, который, как известно, даже ниже, чем у паровоза, при использовании закрытого ящика уменьшается вдвое. Конструкторам приходится решать целый ряд проблем, связанных с увеличением отдачи головок громкоговорителей.

Именно поэтому высококачественные акустические системы так сложны и дороги.

Устройство акустической системы, на первый взгляд, выглядит обманчиво простым. Две или несколько головок громкоговорителей установлены в деревянном ящике и подключены проводами к усилителю. Однако считать, что несколько установленных в ящике головок могут выполнять роль акустической системы для высококачественного воспроизведения звука - глубокое заблуждение.

Головка громкоговорителя, установленная в ящик, который играет роль акустического оформления, называется громкоговорителем. Акустической системой называется громкоговоритель, содержащий одну или несколько головок, излучающих звук в различных областях звукового диапазона частот. Головки громкоговорителей подразделяются на низкочастотные, среднечастотные, высокочастотные и широкополосные.

В зависимости от типа электроакустического преобразователя электрического сигнала в колебания воздуха, окружающего головку, головки бывают электростатическими, электромагнитными, пьезоэлектрическими, плазменными и электродинамическими. Наибольшее распространение получили электродинамические головки громкоговорителей.

Электродинамическая головка громкоговорителя с подвижной катушкой была впервые изобретена и запатентована в 1925 году фирмой General Electric и с тех пор не претерпела принципиальных изменений.

Любая электродинамическая головка подвижной системы, магнитной системы и диффузородержателя. В свою очередь, подвижная система состоит из диффузора, внешнего подвеса, центрирующей шайбы и звуковой катушки.

Диффузор является основным элементом подвижной системы. Диффузоры низкочастотных головок всегда имеют форму конуса. Среднечастотные и высокочастотные головки могут иметь диффузоры как в виде конуса (конусные головки), так и в виде сферы (купольные головки). Диффузоры конусных головок изготавливают методом литья из бумажной массы с различными добавками (шерсть, хлопок и пр.), вводимыми для получения необходимых физико-механических свойств, от которых во многом зависит качество звучания. В последнее время в производстве головок нашли широкое применение диффузоры из синтетических материалов, в частности, из полипропилена. Некоторые фирмы применяют для изготовления диффузоров конусных головок металлические сплавы, а также используют слоистые конструкции, состоящие из нескольких слоев, выполненных из материалов с разными физико-механическими свойствами. Такие сложные конструкции применяют для улучшения качества звучания громкоговорителей. С указанной целью бумажные диффузоры в процессе производства подвергают пропитке специальными составами.

Различают диффузоры с прямолинейной и криволинейной образующей конуса. Диффузоры с прямолинейной образующей проще в изготовлении и применялись в головках громкоговорителей в первые годы после их изобретения. В современных головках применяют диффузоры исключительно с криволинейной образующей из-за отсутствия в таких диффузорах так называемых параметрических резонансов, вызывающих посторонние призвуки в звучании. Для борьбы с параметрическими резонансами диффузора на поверхность конуса многие изготовители наносят серию концентрических канавок.

Диффузоры купольных головок изготавливают методом прессования из натуральных и синтетических тканей с последующей пропиткой специальными составами, а также из синтетических пленок и металлической фольги. Вторым элементом подвижной системы электродинамической головки громкоговорителя является внешний подвес, необходимый для поступательного перемещения диффузора при работе головки громкоговорителя. Подвес может быть выполнен как единое целое с диффузором в виде двух- или многозвенного гофра, а также в виде приклеенного к диффузору кольца из резины, каучука, полиуретана и других материалов. К подвесу предъявляются очень жесткие требования в части его упругих свойств. Подвес должен обладать достаточной гибкостью и сохранять линейность упругих свойств во всем диапазоне смещений подвижной системы головки громкоговорителя. Выполнение первого условия необходимо для получения низкой частоты основного (собственного) резонанса подвижной системы головки громкоговорителя, что очень важно для хорошего воспроизведения самых низких частот. Второе условие должно соблюдаться для обеспечения низких нелинейных искажений. Выполнение перечисленных условий достигается применением для изготовления подвеса соответствующих материалов и выбором подходящей его формы (формы и количества канавок, их высоты и т.п.). В современных головках громкоговорителей применяют подвесы, имеющие в сечении S-образную, тороидальную форму.

Центрирующая шайба является третьим элементом подвижной системы, оказывающим влияние на качество головки громкоговорителя. Ее назначение - обеспечить правильное положение звуковой катушки в воздушном зазоре магнитной системы головки. Для этого центрирующая шайба должна обладать минимальной гибкостью в радиальном и максимально возможной гибкостью в осевом направлении. Выполнение первого условия необходимо для обеспечения механической надежности головки (отсутствия касания звуковой катушкой стенок зазора магнитной системы), второго - для обеспечения низкой частоты ее основного резонанса. Кроме того, центрирующая шайба должна сохранять линейность характеристик упругости во всем диапазоне перемещения подвижной системы головки громкоговорителя. От этого зависит величина нелинейных искажений воспроизводимого головкой сигнала. Центрирующие, шайбы могут быть изготовлены из текстолита, картона, бумаги или ткани. Шайбы из текстолита, бумаги и картона, получившие широкое распространение в 30-40-е годы, в настоящее время полностью вытеснены гофрированными шайбами так называемого коробчатого типа, изготовленными из хлопчатобумажной или шелковой ткани с пропиткой бакелитовым лаком. По внешнему виду такие центрирующие шайбы напоминают цилиндрическую коробку с гофрированным дном и развальцованным в плоское кольцо цилиндрическим краем. Последний элемент подвижной системы электродинамической головки громкоговорителя - звуковая катушка. Звуковая катушка наматывается медным или алюминиевым проводом в эмалевой изоляции на бумажный или металлический каркас и пропитывается лаком для предотвращения сползания витков. При протекании тока по звуковой катушке вокруг нее создается электромагнитное поле, при взаимодействии которого с магнитным полем, создаваемым магнитной системой головки, возникает сила Лоренца, которая перемещает звуковую катушку и прикрепленный к ней диффузор в осевом направлении. Таким образом происходит излучение звука головкой.

Магнитная система является важнейшим конструктивным узлом электродинамической головки, во многом определяющим ее электроакустические параметры. Еще в конце 40-х и начале 50-х годов применялись головки с электрическим возбуждением, в магнитных системах которых для создания постоянного магнитного поля служила электрическая катушка, называемая обмоткой возбуждения. Для питания обмотки возбуждения постоянным током требовалось иметь в составе аппаратуры специальные выпрямители с очень хорошей фильтрацией выпрямленного напряжения. Обмотка возбуждения потребляла значительную мощность от источника питания и выделяла при работе головки много тепла. Эти и другие недостатки стали причиной быстрого вытеснения головок с электромагнитным возбуждением головками с возбуждением постоянным магнитом. Все без исключения современные электродинамические головки имеют магнитную систему с постоянным магнитом. Магниты бывают керновыми и кольцевыми. Материалом для изготовления керновых магнитов служат сплавы кобальта и различные марки ферритов. Кольцевые магниты бывают только ферритовыми. Большинство современных электродинамических головок имеют кольцевые ферритовые магниты. В последнее время для изготовления магнитов стали применять специальные сплавы с очень хорошими магнитными свойствами, содержащие редкоземельные металлы. Это позволило существенно повысить чувствительность головок без увеличения их габаритных размеров и веса. Конструкция магнитной системы определяется формой применяемого магнита. Если магнит имеет форму кольца, то магнитная система состоит из двух кольцевых фланцев и цилиндрического керна.

Диаметр керна меньше диаметра отверстия в верхнем фланце. Таким образом образован воздушный зазор, в котором перемещается звуковая катушка. При применении кернового магнита в виде сплошного или полого конуса магнитная система представляет собой закрытый или полуоткрытый магнитопровод. Закрытый магнитопровод состоит из стального стакана, в центре дна которого располагается магнит с полюсным наконечником и кольцевого верхнего фланца. Отверстие верхнего фланца и полюсной наконечник образуют воздушный зазор, в котором находится звуковая катушка. В полуоткрытом магнитопроводе вместо стакана применяется металлическая скоба, а верхний фланец имеет прямоугольную форму. Для изготовления керна, полюсных наконечников и фланцев применяются специальные марки сталей, к магнитным свойствам которых предъявляются весьма жесткие специфические требования. Форма полюсных наконечников и керна оказывает существенное влияние на величину магнитной индукции в воздушном зазоре магнитной системы головки и равномерность распределения в нем магнитного потока. От этого зависит чувствительность и уровень нелинейных искажений головки. От размеров керна и полюсных наконечников, а также от величины воздушного зазора зависит и степень нагрева, а значит, и термоустойчивость звуковой катушки. Поэтому в мощных низкочастотных головках применяют полюсные наконечники и керны большого диаметра, а также стремятся увеличивать насколько возможно величину воздушного зазора (при увеличении зазора уменьшается чувствительность головки и для ее сохранения необходимо применение более мощного магнита). В последнее время для улучшения охлаждения звуковой катушки некоторые фирмы стали выпускать головки с заполнением воздушного зазора магнитной системы специальной ферромагнитной жидкостью.

Диффузородержатель соединяет подвижную и магнитную системы электродинамической головки громкоговорителя в единую механически прочную конструкцию. Диффузородержатель имеет окна для выхода воздуха, заключенного между ним и диффузором. При отсутствии окон воздух будет воздействовать на подвижную систему в качестве дополнительной акустической нагрузки, уменьшая отдачу головки и ухудшая ее частотную характеристику в области низких частот. Диффузородержатели изготавливают методом штамповки из специальной конструкционной стали, отливают методами точного литья из легких сплавов, а также прессуют из пластмассы.

Динамические головки громкоговорителей, как правило, не применяют без акустического оформления, необходимого для получения удовлетворительных результатов. Причина этого заключается в том, что при колебаниях диффузора головки без оформления сгущения воздуха, образуемые одной его стороной, нейтрализуются разряжениями, образуемыми другой стороной. Применение какого-либо акустического оформления удлиняет путь колебаний воздуха между фронтальной и тыльной сторонами диффузора и полной нейтрализации колебаний не происходит. Это особенно важно на низких частотах, где размеры диффузора малы по сравнению с длиной волны акустического излучения.

Корпус акустической системы помимо выполнения своей основной функции - формирования ее амплитудно-частотной характеристики (АЧХ) в области низких частот вносит значительные искажения в воспроизводимый сигнал из-за вибрации стенок и колебаний находящегося в нем воздуха. С уменьшением толщины стенок уменьшается величина звукового давления на низких частотах, увеличивается неравномерность АЧХ в области средних частот, возрастают уровень нелинейных искажений и длительность переходных процессов. Эти факторы вызывают так называемые "ящичные" призвуки, ухудшающие качество звучания. Поэтому конструированию корпусов в практике разработки высококачественных акустических систем уделяется самое серьезное внимание. Существуют два источника вибраций, вызывающих излучение звука стенками корпуса акустической системы:

  • возбуждение колебаний находящегося в корпусе воздуха тыльной стороной диффузора установленной в нем головки громкоговорителя и передача колебаний через воздух стенкам корпуса;
  • непосредственная передача вибраций от диффузородержателя головки передней стенке корпуса, а от нее боковым и задней стенкам.

Для уменьшения вибраций стенок конструкторы акустических систем применяют различные методы звукозвукопоглощения, а также виброизоляции и вибропоглощения. Один из широко применяемых способов звукопоглощения состоит в заполнении внутреннего объема корпуса минеральной ватой, специальным синтетическим волокном, шерстью, супертонким стекловолокном и другими материалами. Эффективность звукопоглощающих материалов оценивают коэффициентом звукопоглощения А, равным отношению величины поглощенной энергии Wпогл к величине падающей энергии Wпад. Величина этого коэффициента зависит от частоты, толщины и плотности материала. Для увеличения величины коэффициента звукопоглощения на низких частотах увеличивают толщину звукопоглотителя, а также плотность заполнения им корпуса акустической системы. Однако наличие в корпусе чрезмерного количества звукопоглощающего материала приводит к снижению величины звукового давления на низших частотах и воспроизведению "сухого", невыразительного баса.

Звукоизоляция корпуса акустической системы определяется как количеством и физическими свойствами находящегося внутри него звукопоглощающего материала, так и звукоизолирующими свойствами его стенок. Задача разработчиков акустических систем состоит в том, чтобы максимально увеличить звукоизоляцию корпуса путем грамотного выбора его конструкции и материала стенок. Один из распространенных методов повышения звукоизоляции состоит в увеличении жесткости и массы стенок корпуса. Поэтому некоторые фирмы применяют для изготовления корпусов акустических систем мрамор, пенобетон и даже кирпич. Такие корпуса обеспечивают хорошую звукоизоляцию (до 30 дБ), однако имеют слишком большую массу. Более практичны корпуса, стенки которых изготовлены из двух слоев фанеры или древесностружечных плит с заполнением промежутка между ними песком, дробью или звукопоглощающим материалом. Для снижения амплитуды вибраций стенок корпуса используют вибропоглощающие покрытия в виде листовой резины, жесткой пластмассы, битумных мастик и т.п., наносимые на его внутренние поверхности.

Для борьбы с прямой передачей вибраций от диффузородержателя головки передней стенке, а от нее и другим стенкам корпуса применяют сплошные резиновые прокладки, устанавливаемые между диффузородержателем и передней стенкой, локальные опорные виброизоляторы для крепежных винтов, амортизирующие прокладки между передней и боковыми стенками корпуса, развязку диффузородержателя от передней стенки путем его опоры на дно корпуса и другие способы. На качестве звучания сказывается и внешняя конфигурация корпуса (его форма, наличие отражающих звук выступов и впадин, величина радиуса скругления углов и т.д.), от которой зависит степень проявления дифракционных эффектов, вызывающих нарушение тембральной окраски и стереофонической звуковой картины. Многочисленные экспериментальные исследования показали, что переход от прямоугольных корпусов с острыми углами к корпусам гладкой формы (например, в виде сферы) позволяет существенно уменьшить неравномерность АЧХ звукового давления в области средних и высших частот. Поэтому многие фирмы-изготовители высококачественных акустических систем устанавливают средне- и высокочастотные головки громкоговорителей в блоки обтекаемой формы в виде сфер, цилиндров, кубоидов со скругленными углами, изолированные от акустического оформления низкочастотных головок.

Для уменьшения неравномерности АЧХ низкочастотного громкоговорителя переднюю стенку прямоугольного корпуса акустических систем выполняют как можно более узкой (насколько позволяют размеры низкочастотной головки). При этом частоты дифракционных пиков и провалов на его АЧХ расположены, как правило, выше частоты среза разделительного фильтра. Уменьшение ширины передней стенки корпуса способствует также расширению диаграммы направленности акустической системы. Глубина корпуса существенно влияет на величину "задержанных" резонансов, которые, по-видимому, и служат причиной давно установленного опытным путем факта, что акустические системы с плоским корпусом субъективно звучат хуже по сравнению с акустическими системами, имеющими достаточно глубокий корпус.