E является. Натуральный логарифм и число е

Каждая из функций Е проверяет указанное значение и возвращает в зависимости от результата значение ИСТИНА или ЛОЖЬ. Например, функция ЕПУСТО возвращает логическое значение ИСТИНА, если проверяемое значение является ссылкой на пустую ячейку; в противном случае возвращается логическое значение ЛОЖЬ.

Функции Е используются для получения сведений о значении перед выполнением с ним вычисления или другого действия. Например, для выполнения другого действия при возникновении ошибки можно использовать функцию ЕОШИБКА в сочетании с функцией ЕСЛИ :

= ЕСЛИ( ЕОШИБКА(A1); "Произошла ошибка."; A1 * 2)

Эта формула проверяет наличие ошибки в ячейке A1. При возникновении ошибки функция ЕСЛИ возвращает сообщение "Произошла ошибка." Если ошибки отсутствуют, функция ЕСЛИ вычисляет произведение A1*2.

Синтаксис

ЕПУСТО(значение)

ЕОШ(значение)

ЕОШИБКА(значение)

ЕЛОГИЧ(значение)

ЕНД(значение)

ЕНЕТЕКСТ(значение)

ЕТЕКСТ(значение)

аргумент функции Е описаны ниже.

    значение Обязательный аргумент. Проверяемое значение. Значением этого аргумента может быть пустая ячейка, значение ошибки, логическое значение, текст, число, ссылка на любой из перечисленных объектов или имя такого объекта.

Функция

Возвращает значение ИСТИНА, если

Аргумент "значение" ссылается на пустую ячейку

Аргумент "значение" ссылается на любое значение ошибки, кроме #Н/Д

Аргумент "значение" ссылается на любое значение ошибки (#Н/Д, #ЗНАЧ!, #ССЫЛ!, #ДЕЛ/0!, #ЧИСЛО!, #ИМЯ? или #ПУСТО!)

Аргумент "значение" ссылается на логическое значение

Аргумент "значение" ссылается на значение ошибки #Н/Д (значение недоступно)

ЕНЕТЕКСТ

Аргумент "значение" ссылается на любой элемент, который не является текстом. (Обратите внимание, что функция возвращает значение ИСТИНА, если аргумент ссылается на пустую ячейку.)

Аргумент "значение" ссылается на число

Аргумент "значение" ссылается на текст

Замечания

    Аргументы в функциях Е не преобразуются. Любые числа, заключенные в кавычки, воспринимаются как текст. Например, в большинстве других функций, требующих числового аргумента, текстовое значение "19" преобразуется в число 19. Однако в формуле ЕЧИСЛО("19") это значение не преобразуется из текста в число, и функция ЕЧИСЛО возвращает значение ЛОЖЬ.

    С помощью функций Е удобно проверять результаты вычислений в формулах. Комбинируя эти функции с функцией ЕСЛИ , можно находить ошибки в формулах (см. приведенные ниже примеры).

Примеры

Пример 1

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем - клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Скопируйте образец данных из приведенной ниже таблицы и вставьте его в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем - клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Формула

Описание

Результат

ЕПУСТО(A2)

Проверяет, является ли ячейка C2 пустой

ЕОШИБКА(A4)

Проверяет, является ли значение в ячейке A4 (#ССЫЛ!) значением ошибки

Проверяет, является ли значение в ячейке A4 (#ССЫЛ!) значением ошибки #Н/Д

Проверяет, является ли значение в ячейке A6 (#Н/Д) значением ошибки #Н/Д

Проверяет, является ли значение в ячейке A6 (#Н/Д) значением ошибки

ЕЧИСЛО(A5)

Проверяет, является ли значение в ячейке A5 (330,92) числом

ЕТЕКСТ(A3)

Проверяет, является ли значение в ячейке A3 ("Регион1") текстом

Прежде чем познакомится с понятием натурального логарифма, рассмотрим понятие постоянного числа $е$.

Число $e$

Определение 1

Число $e$ – это математическое постоянное, которое является трансцендентным числом и равно $e \approx 2,718281828459045\ldots$.

Определение 2

Трансцендентным называется число, которое не является корнем полинома с целыми коэффициентами.

Замечание 1

Последней формулой описывается второй замечательный предел .

Число е также носит название числа Эйлера , а иногда и числа Непера .

Замечание 2

Чтобы запомнить первые знаки числа $е$ зачастую пользуются следующим выражением: «$2$, $7$, дважды Лев Толстой» . Конечно же, для того, чтобы можно было его использовать, необходимо помнить, что Лев Толстой родился в $1828$ г. Именно эти числа дважды повторяются в значении числа $е$ после целой части $2$ и десятичной $7$.

Рассмотрение понятия числа $е$ при изучении натурального логарифма мы начали именно потому, что оно стоит в основании логарифма $\log_{e}⁡a$, который принято называть натуральным и записывать в виде $\ln ⁡a$.

Натуральный логарифм

Часто при расчетах используют логарифмы, в основании которых стоит число $е$.

Определение 4

Логарифм с основанием $е$ называют натуральным .

Т.е. натуральный логарифм можно обозначить как $\log_{e}⁡a$, но в математике принято использовать обозначение $\ln ⁡a$.

Свойства натурального логарифма

    Т.к. логарифм по любому основанию от единицы равен $0$, то и натуральный логарифм единицы равен $0$:

    Натуральный логарифм от числа $е$ равен единице:

    Натуральный логарифм произведения двух чисел равен сумме натуральных логарифмов от этих чисел:

    $\ln ⁡(ab)=\ln ⁡a+\ln ⁡b$.

    Натуральный логарифм частного двух чисел равен разнице натуральных логарифмов этих чисел:

    $\ln⁡\frac{a}{b}=\ln ⁡a-\ln⁡ b$.

    Натуральный логарифм степени числа может быть представлен в виде произведения показателя степени на натуральный логарифм подлогарифмического числа:

    $\ln⁡ a^s=s \cdot \ln⁡ a$.

Пример 1

Упростить выражение $\frac{2 \ln ⁡4e-\ln ⁡16}{\ln ⁡5e-\frac{1}{2} \ln ⁡25}$.

Решение .

Применим к первому логарифму в числителе и в знаменателе свойство логарифма произведения, а ко второму логарифму числителя и знаменателя – свойство логарифма степени:

$\frac{2 \ln ⁡4e-\ln⁡16}{\ln ⁡5e-\frac{1}{2} \ln ⁡25}=\frac{2(\ln ⁡4+\ln ⁡e)-\ln⁡ 4^2}{\ln ⁡5+\ln ⁡e-\frac{1}{2} \ln⁡ 5^2}=$

откроем скобки и приведем подобные слагаемые, а также применим свойство $\ln ⁡e=1$:

$=\frac{2 \ln ⁡4+2-2 \ln ⁡4}{\ln ⁡5+1-\frac{1}{2} \cdot 2 \ln ⁡5}=\frac{2}{\ln ⁡5+1-\ln ⁡5}=2$.

Ответ : $\frac{2 \ln ⁡4e-\ln ⁡16}{\ln ⁡5e-\frac{1}{2} \ln ⁡25}=2$.

Пример 2

Найти значение выражения $\ln⁡ 2e^2+\ln \frac{1}{2e}$.

Решение .

Применим формулу суммы логарифмов:

$\ln 2e^2+\ln \frac{1}{2e}=\ln 2e^2 \cdot \frac{1}{2e}=\ln ⁡e=1$.

Ответ : $\ln 2e^2+\ln \frac{1}{2e}=1$.

Пример 3

Вычислить значение логарифмического выражения $2 \lg ⁡0,1+3 \ln⁡ e^5$.

Решение .

Применим свойство логарифма степени:

$2 \lg ⁡0,1+3 \ln e^5=2 \lg 10^{-1}+3 \cdot 5 \ln ⁡e=-2 \lg ⁡10+15 \ln ⁡e=-2+15=13$.

Ответ : $2 \lg ⁡0,1+3 \ln e^5=13$.

Пример 4

Упростить логарифмическое выражение $\ln \frac{1}{8}-3 \ln ⁡4$.

$3 \ln \frac{9}{e^2}-2 \ln ⁡27=3 \ln (\frac{3}{e})^2-2 \ln 3^3=3 \cdot 2 \ln \frac{3}{e}-2 \cdot 3 \ln ⁡3=6 \ln \frac{3}{e}-6 \ln ⁡3=$

применим к первому логарифму свойство логарифма частного:

$=6(\ln ⁡3-\ln ⁡e)-6 \ln⁡ 3=$

откроем скобки и приведем подобные слагаемые:

$=6 \ln ⁡3-6 \ln ⁡e-6 \ln ⁡3=-6$.

Ответ : $3 \ln \frac{9}{e^2}-2 \ln ⁡27=-6$.

e - математическая константа, основание натурального логарифма, иррациональное и трансцендентное число. e = 2,718281828459045… Иногда число e называют числом Эйлера или неперовым числом . Играет важную роль в дифференциальном и интегральном исчислении.

Способы определения

Число e может быть определено несколькими способами.

Свойства

История

Данное число иногда называют неперовым в честь шотландского учёного Джона Непера, автора работы «Описание удивительной таблицы логарифмов» (1614 г.). Однако это название не совсем корректно, т. к. у него логарифм числа x был равен .

Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 г. Негласно, потому что там содержится только таблица натуральных логарифмов, сама же константа не определена. Предполагается, что автором таблицы был английский математик Вильям Отред. Саму же константу впервые вывел швейцарский математик Якоб Бернулли при попытке вычислить значение следующего предела:

Первое известное использование этой константы, где она обозначалась буквой b , встречается в письмах Готфрида Лейбница Кристиану Гюйгенсу, 1690 и 1691 гг. Букву e начал использовать Леонард Эйлер в 1727 г., а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 г. Соответственно, e иногда называют числом Эйлера . Хотя впоследствии некоторые учёные использовали букву c , буква e применялась чаще и в наши дни является стандартным обозначением.

Почему была выбрана именно буква e , точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a , b , c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой. Неправдоподобно предположение, что Эйлер выбрал e как первую букву в своей фамилии (нем. Euler ), поскольку он был очень скромным человеком и всегда старался подчеркнуть значимость труда других людей.

Способы запоминания

Число e можно запомнить по следующему мнемоническому правилу: два и семь, далее два раза год рождения Льва Толстого (1828), затем углы равнобедренного прямоугольного треугольника (45 , 90 и 45 градусов).

В другом варианте правила e связывается с президентом США Эндрю Джексоном: 2 - столько раз избирался, 7 - он был седьмым президентом США, 1828 - год его избрания, повторяется дважды, поскольку Джексон дважды избирался. Затем - опять-таки равнобедренный прямоугольный треугольник.

В ещё одном небезынтересном способе предлагается запомнить число e с точностью до трёх знаков после запятой через «число дьявола»: нужно разделить 666 на число, составленное из цифр 6 − 4, 6 − 2, 6 − 1 (три шестёрки, из которых в обратном порядке удаляются три первые степени двойки): .

В четвёртом способе предлагается запомнить e как .

Грубое (с точностью до 0,001), но красивое приближение полагает e равным . Совсем грубое (с точностью 0,01) приближение даётся выражением .

«Правило Боинга»: даёт неплохую точность 0,0005.

«Стих»: Мы порхали и блистали, но застряли в перевале; не признали наши крали авторалли.

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 77078 54499 69967 94686 44549 05987 93163 68892 30098 79312 77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 28869 39849 64651 05820 93923 98294 88793 32036 25094 43117 30123 81970 68416 14039 70198 37679 32068 32823 76464 80429 53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 96181 88159 30416 90351 59888 85193 45807 27386 67385 89422 87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 49146 31409 34317 38143 64054 62531 52096 18369 08887 07016 76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 01157 47704 17189 86106 87396 96552 12671 54688 95703 50354 02123 40784 98193 34321 06817 01210 05627 88023 51920

ОПРЕДЕЛЕНИЕ

Число — иррациональная и трансцендентная математическая константа, называемая числом Эйлера или числом Непера , являющаяся основанием натурального логарифма.

Негласно константа присутствует в работе «Описание удивительной таблицы логарифмов» шотландского математика Джона Непера (1550-1617) (а точнее в приложении к переводу этой работы, который был опубликован в 1618 г.). Первые упоминания про эту константу имеются в письмах саксонского философа, логика, математика, механика, физика, юриста, историка, дипломата, изобретателя и языковеда Готфрида Вильгельма Лейбница (1646-1716) к нидерландскому механику, физику, математику, астроному и изобретателю Христиану Гюйнгенсу ван Зёйлихему (1629-1695) в 1690-91 гг. Там она обозначалась буквой . Традиционное обозначение в 1727 г. начал использовать швейцарский, немецкий, российский математик и механик Леонард Эйлер (1707-1783); впервые он употребил ее в своем письме к немецкому математику Кристиану Гольдбаху (1690-1764) в 1731 г. Первой публикацией с этой буквой была работа Л. Эйлера «Механика, или Наука о движении, изложенная аналитически» (1736). Сама же константа впервые была вычислена швейцарским математиком Якобом Бернулли (1655-1705) в ходе решения задачи о предельной величине процентного дохода:

Число играет большую роль в различных разделах математики, а особенно в дифференциальном и интегральном исчислении. Трансцендентность числа Эйлера была доказана французским математиком Шарлем Эрмитом (1822-1901) только в 1873 г.

Задания числа e

1) Через предел:

вероятность (probability) - число от 0 до 1, которое отражает шансы того, что случайное событие произойдет, где 0 - это полное отсутствие вероятности происхождения события, а 1 означает, что рассматриваемое событие определенно произойдет.

Вероятность события E является числом от до 1.
Сумма вероятностей взаимоисключающих событий равна 1.

эмпирическая вероятность - вероятность, которая посчитана как относительная частота события в прошлом, извлеченная из анализа исторических данных.

Вероятность очень редких событий нельзя посчитать эмпирически.

субъективная вероятность - вероятность, основанная на личной субъективной оценке события безотносительно исторических данных. Инвесторы, которые принимают решения о покупке и продаже акций зачастую действуют именно исходя из соображений субъективной вероятности.

априорная вероятность -

Шанс 1 из… (odds) того что событие произойдет через понятие вероятности. Шанс появления события выражается через вероятность так: P/(1-P).

Например, если вероятность события 0,5, то шанс события 1 из 2 т.к. 0,5/(1-0,5).

Шанс того, что событие не произойдет вычисляется по формуле (1-P)/P

Несогласованная вероятноть - например в цене акций компании А на 85% учтено возможное событие E, а в цене акций компании Б всего на 50%. Это называется несогласованная вероятность. Согласно теореме голландских ставок, несогласованная вероятность создает возможности для извлечения прибыли.

Безусловная вероятность - это ответ на вопрос «Какова вероятность того, что событие произойдет?»

Условная вероятность - это ответ на вопрос: «Какова вероятность события A если событие Б произошло». Условная вероятность обозначается как P(A|B).

Совместная вероятность - вероятность того, что события А и Б произойдут одновременно. Обозначается как P(AB).

P(A|B) = P(AB)/P(B) (1)

P(AB) = P(A|B)*P(B)

Правило суммирования вероятностей:

Вероятность того, что случится либо событие A либо событие B -

P (A or B) = P(A) + P(B) - P(AB) (2)

Если события A и B взаимоисключающие, то

P (A or B) = P(A) + P(B)

Независимые события - события A и B независимы если

P(A|B) = P(A), P(B|A) = P(B)

То есть это последовательность результатов, где значение вероятности постоянно от одного собятия к другому.
Бросок монеты - пример такого события, - результат каждого следующего броска не зависит от результата предыдущего.

Зависимые события - это такие события, когда вероятность появления одного зависит от вероятности появления другого.

Правило умножения вероятностей независимых событий:
Если события A и B независимы, то

P(AB) = P(A) * P(B) (3)

Правило полной вероятности:

P(A) = P(AS) + P(AS") = P(A|S")P(S) + P (A|S")P(S") (4)

S и S" - взаимоисключающие события

математическое ожидание (expected value) случайной переменной есть среднее возможных исходов случайной величины. Для события X матожидание обоначается как E(X).

Допустим у нас есть 5 значений взаимоисключающих событий c определенной вероятностью (например доход компании составил такую-то сумму с такой вероятностью). Матожиданием будет сумма всех исходов помноженных на их вероятность:

Дисперсия случайной величины - матожидание квадратных отклонений случайной величины от ее матожидания:

s 2 = E{ 2 } (6)

Условное матожидание (conditional expected value) - матожидание случайной величины X при условии того, что событие S уже произошло.