Схема импульсного блока питания на IR2151-IR2153. Простой ИБП на IR2153 с защитой от перегрузки и КЗ (300Вт) Блок питания ir2153 с защитой

Долго меня волновала тема того, как можно использовать блок питания от компьютера в качестве питания усилителя мощности. Но переделывать блок питания - то ещё развлечение, особенно импульсный с таким плотным монтажом. Хоть я и привычный ко всяким фейерверкам, но домашних пугать очень не хотелось, да и опасненько это и для самого.

В общем, изучение вопроса привело к довольно простому решению, не требующему никаких особенных деталей и практически никакого налаживания. Собрал-включил-работает. Да и хотелось попрактиковаться в вытравливании печатных плат с помощью фоторезиста, так как в последнее время современные лазерные принтеры стали жадными до тонера, и привычная лазеро-утюжная технология не задалась. Результатом работы с фоторезистом я остался очень доволен, - для эксперимента на плате вытравил надпись линией толщиной 0,2мм. И она прекрасно получилась! Итак, довольно прелюдий, опишу схему и процесс сборки-наладки блока питания.

Блок питания на самом деле очень прост, собран практически весь из деталей, оставшихся после разборки не самого хорошего импульсника от компьютера, - из тех, в которые «не докладывают» деталей. Одна из этих деталей - импульсный трансформатор, который можно использовать без перемотки в блоке питания на 12В, или пересчитать, что тоже очень просто, на любое напряжение, для чего я использовал программу Москатова.

Схема блока импульсного блока питания:


В качестве компонентов были использованы следующие:
драйвер ir2153 - микросхема, используется в импульсных преобразователях для питания люминесцентных ламп, её более современный аналог - ir2153D и ir2155. В случае использования ir2153D диод VD2 можно исключить, так как он уже встроен в микросхему. У всех микросхем серий 2153 в цепи питания уже стоит встроенный стабилитрон на 15,6В, поэтому не стоит сильно заморачиваться с устройством отдельного стабилизатора напряжения для питания самого драйвера;
VD1 - любой выпрямительный с обратным напряжением не ниже 400В;
VD2-VD4 - «быстродействующие», с малым временем восстановления (не больше 100нс) например - SF28; На самом деле VD3 и VD4 можно исключить, я их не ставил;
в качестве VD4, VD5 - использован сдвоенный диод от компьютерного блока питания «S16C40? - это диод «Шоттки», можно поставить любой другой, менее мощный. Нужна эта обмотка для питания драйвера ir2153 после того, как запустится импульсный преобразователь. Можно исключить и диоды и обмотку, если не планируется снимать мощность более 150Вт;
[i]Диоды VD7-VD10 - мощные диоды «Шоттки», на напряжение не ниже 100В и ток не меньше 10 А, например - MBR10100, или другие;
транзисторы VT1, VT2 - любые мощные полевые, от их мощности зависит выходная, но сильно тут увлекаться не стоит, как и снимать с блока более 300Вт;
L3 - намотан на ферритовом стержне и содержит 4-5 витков провода 0,7мм; Эту цепочку (L3, C15, R8) можно вообще исключить, она нужна, чтобы немного облегчить режим работы транзисторов;
Дроссель L4 намотан на кольце от старого дросселя групповой стабилизации того же блока питания от компьютера, и содержит по 20 витков, мотается сдвоенным проводом.

Конденсаторы на входе можно поставить и меньшей ёмкости, их ёмкость можно примерно подобрать исходя и снимаемой мощности блока питания, примерно как 1-2мкФ на 1 Вт мощности. Не стоит увлекаться конденсаторами и ставить на выход блока питания ёмкости больше 10000 мкФ, так как это может привести к «салюту» при включении, так как они при включении требуют значительного тока для зарядки.

Теперь пару слов о трансформаторе. Параметры импульсного трансформатора определены в программе Москатова и соответствуют Ш-образному сердечнику со следующими данными: S0 = 1,68 кв.см; Sc = 1,44 кв.см; Lср.л. = 86см; Частота преобразования - 100кГц;

Получившиеся расчётные данные:
Обмотка 1 - 27 витков 0,90мм; напряжение - 155В; Намотана в 2 слоя проводом, состоящим из 2 жил по 0,45мм; Первый слой - внутренний содержит 14 витков, второй слой - наружний содержит 13 витков;
обмотка 2 - 2 половины по 3 витка проводом 0,5мм; это - «обмотка самопитания» на напряжение около 16В, мотается проводом так, чтобы направления намотки были в разную сторону, средняя точка выводится наружу и подключается на плате;
обмотка 3 - 2 половины по 7 витков, намотана так же многожильным проводом, сначала - одна половина в одну сторону, потом через слой изоляции - вторая половина, в противоположную сторону. Концы обмоток выведены наружу в «косу» и подключаются в общую точку на плате. Обмотка рассчитана на напряжение около 40В.

Таким же образом можно рассчитать трансформатор на любое нужное напряжение. У меня собраны 2 таких блока питания, - один - для усилителя на TDA7293, второй - на 12В для питания всяческих поделок, - используется в качестве лабораторного.

Блок питания для усилителя на напряжение 2х40В:

Импульсный блок питания на 12В:

Блок питания в сборе в корпусе:

Фото испытаний импульсного блока питания, - того, что для усилителя с помощью эквивалента нагрузки из нескольких резисторов МЛТ-2 по 10Ом, включаемых в разной последовательности. Целью было получить данные о мощности, падении напряжения и разности напряжений в плечах +/- 40В. По итогам у меня получились такие параметры:
Мощность - около 200Вт (больше не стал пытаться снимать);
напряжение , в зависимости от загрузки - 37,9-40,1В во всём диапазоне от 0 до 200Вт

Температура на максимальной мощности 200Вт после тестового прогона в течение получаса:
трансформатора - около 70град.цельсия, радиатора диодов без активного обдува - около 90 град.цельсия. С активным обдувом - быстро приближается к комнатной и практически не греется. В итоге радиатор был заменён, и на следующих фото блок питания уже с другим радиатором.
При разработке блока питания были использованы материалы сайта vegalab и radiokot, на форуме «Веги» очень подробно описан этот блок питания, так же есть варианты блока с защитой от КЗ, что есть неплохо. У меня например при случайном КЗ мгновенно сгорела дорожка на плате во вторичной цепи.

Внимание!
Первое включение блока питания следует производит через лампу накаливания мощностью не более 40Вт. При первом включении в сеть она должна на короткое время вспыхнуть и погаснуть. Светиться она практически не должна! При этом можно проверить выходные напряжения и попробовать несильно нагрузить блок (не больше 20Вт!). Если всё в порядке, - лампочку можно убирать и приступать к испытаниям.

При сборке и наладке блока питания ни одного животного не пострадало, хотя один раз-таки был словлен «фейерверк» с искрами и спецэффектами при взрыве силовых ключей. После их замены блок заработал как ни в чём не бывало;

Внимание! Этот блок питания имеет цепи, связанные с сетью высокого напряжения! Если вы не понимаете, что это такое и к чему может привести, - лучше отказаться от идеи собрать этот блок. Кроме того, в цепи высокого напряжения имеется действующее напряжение около 320В!

У вас нет доступа к скачиванию файлов с нашего сервера

Блок питания построен по полу мостовой схеме на основе микросхемы IR2153. На выходе этого блока можно получить любое нужное вам напряжение, все зависит от параметров вторичной обмотки трансформатора.

Подробно рассмотрим схему импульсного блока питания.

Мощность источника питания именно с такими компонентами около 150 ватт.

Сетевое переменное напряжение через предохранитель и термистор поступает на диодный выпрямитель.

После выпрямителя стоит электролитический конденсатор, который в момент включения блока в сеть будет заряжаться большим током, термистор как раз ограничивает этот ток. Конденсатор нужен с напряжением 400-450 Вольт. Далее постоянное напряжение поступает на силовые ключи. Одновременно через ограничительный резистор и выпрямительный диод поступает питание на микросхему IR2153.

Резистор нужен мощный, не менее 2-х ватт, лучше взять 5-и ваттный. Напряжение питания для микросхемы дополнительно сглаживается небольшим электролитическим конденсатором, емкостью от 100 до 470мкФ, желательно на 35 Вольт. Микросхема начинает вырабатывать последовательность прямоугольных импульсов, частота которых зависят от номинала компонентов времязадающей цепи, в моем случае частота находиться в районе 45кГц.

На выходе установлен выпрямитель со средней точкой. Выпрямитель в виде диодной сборки в корпусе то-220. Если выходное напряжение планируется в пределах 40 вольт, то можно использовать диодные сборки выпаянные из компьютерных блоков питания.

Конденсатор вольтодобавки, предназначен для корректного срабатывания верхнего полевого ключа, емкость зависит от того, какой транзистор использован, но в среднем 1мкФ хватит для большинства случаев.

Перед запуском нужно проверить работу генератора. Для этих целей от внешнего источника питания на указанные выводы микросхемы подается около 15-и вольт постоянного напряжения.
Далее проверяется наличие прямоугольных импульсов на затворе полевых ключей, импульсы должны быть полностью идентичными, одинаковой частоты и заполнения.
Первый запуск источника питания обязательно делается через страховочную лампу накаливания на 220 Вольт с мощностью около 40 ватт, будьте предельно осторожны, не дотрагивайтесь платы во время работы, после отключения блока от сети дождитесь несколько минут пока высоковольтный конденсатор не разрядится через соответствующий резистор.
Очень важно указать то, что эта схема не имеет защиты от коротких замыканий, поэтому любые короткие замыкания, даже кратковременные приведут к выходу из строя силовых ключей и микросхемы IR2153, так, что будьте аккуратны.

Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153.

Данный блок питания обладает следующими достоинствами:

  • Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
  • Схема плавного пуска ИБП.
  • Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
  • Простая и дешевая схема.

Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность - 300Вт
Кратковременная выходная мощность - 500Вт
Рабочая частота - 50кГц
Выходное напряжение - 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД - не менее 85% (зависит от трансформатора)

Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153.
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора - R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева.В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 - 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме.

Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь.

Таким вот образом я тестировал ИБП на полной мощности.

В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с "кристально чистой" водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.

Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.

Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные.

Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.

Печатная плата в готовом виде выглядит так (выполнено ):

Размеры платы 188х88мм. Текстолит я использовал с толстой медью - 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET

IR2153D

1 В блокнот
VT1 Биполярный транзистор

2N5551

1 В блокнот
VT2 Биполярный транзистор

2N5401

1 В блокнот
VT3 Биполярный транзистор

KSP13

1 Или MPSA13 В блокнот
VT4, VT5 MOSFET-транзистор

IRF740

2 В блокнот
VD1 Стабилитрон

1N4743A

1 13В 1.3Вт В блокнот
VD2, VD4 Выпрямительный диод

HER108

2 Или другой быстрый диод В блокнот
VD3 Выпрямительный диод

1N4148

1 В блокнот
VD5, VD6 Диод Шоттки

MBR20100CT

2 Или другой на соответствующее напряжение и ток В блокнот
VDS1 Выпрямительный диод

1N4007

4 В блокнот
VDS2 Диодный мост

RS607

1 В блокнот
VDR1 Варистор MYG14-431 1 В блокнот
HL1 Светодиод Красный 5мм 1 Только красный! Другие цвета не допустимы! В блокнот
K1 Реле TIANBO HJR-3FF-S-Z 1 Катушка 12В 400Ом В блокнот
R1 Резистор 0,25Вт

8.2 кОм

1 В блокнот
R2 Резистор 2Вт

18 кОм

1 В блокнот
R3 Резистор 0,25Вт

100 Ом

1 В блокнот
R5 Резистор 0,25Вт

47 кОм

1 В блокнот
R6 Резистор 2Вт

22 Ом

1 В блокнот
R4, R7 Резистор 0,25Вт

15 кОм

2 В блокнот
R8, R9 Резистор 0,25Вт

33 Ом

2 В блокнот
R10 Резистор подстроечный

3.3 кОм

1 Многооборотный

Самотактируемый полумостовой драйвер

Отличительные особенности:

  • Интегрированный 600В полумостовой драйвер
  • 15.6В стабилитрон на линии Vcc
  • Действительная микромощность при старте
  • Более жесткое начальное управление временем паузы
  • Низкий температурный коэффициент длительности паузы
  • Функция выключения (1/6 от Vcc на выводе СТ)
  • Увеличенный гистерезис блокировки при снижении напряжения (1 В)
  • Более маломощная схема преобразования уровня
  • Постоянная ширина импульсов LO,HO при старте
  • Уменьшено di/dt для лучшей нечувствительности к шумам
  • Выход драйвера нижнего уровня в фазе с RT
  • Внутренний 50нс диод запуска (IR2153D)
  • Увеличенная стойкость к защелкиванию на всех входах и выходах
  • Защита от электростатических разрядов на всех выводах
  • Напряжение смещения V OFFSET не более 600В
  • Скважность 2 (меандр)
  • Tr/Tp 80/40нс
  • Vclamp 15.6В
  • Пауза 1.2 мкс

Типовая схема включения:

Блок-схема:


Расположение выводов:

Описание выводов:

Описание:

IR2153 – улучшенная версия драйвера IR2155 и IR2151, которая содержит драйвер високовольтного полумоста с генератором аналогичным промышленному таймеру 555 (К1006ВИ1). IR2153 отличается лучшими функциональными возможностями и более прост в использовании по сравнению с предыдущими микросхемами. Функция выключения в данном устройстве совмещена с выводом СТ, при этом выключение обоих каналов происходит при подаче управляющего сигнала низкого уровня.

Кроме того, формирование выходных импульсов связано с моментом пересечения увеличивающегося напряжения на Vcc порога схемы блокировки от понижения напряжения, тем самым была достигнута более высокая стабильность импульсов при запуске.

Стойкость к шумам была значительно улучшена за счет уменьшения скорости изменения тока драйверов (di/dt) а также за счет увеличения гистерезиса схемы блокировки от понижения напряжения (до 1В). Наконец, существенное внимание было уделено повышению стойкости защелок и обеспечению всесторонней защиты от электростатических разрядов на всех выводах.