Pro mini распиновка. Arduino Pro Mini — распиновка и характеристики

Данная плата предназначена для использования в готовом устройстве. Поэтому у этого микроконтроллера нет встроенной микросхемы для связи по USB-UART. Так же нет и разъемов USB для подключения и прошивки. Это позволяет сильно уменьшить размеры платы, а также ее стоимость. Для подключения к компьютеру и прошивки используется специальный программатор. Существует две версии данной платы: с питанием 3,3 В и частотой 8 МГц и с питанием от 5 В с частотой 16 МГц. В младшей версии этой ардуинки используется чип ATmega168. Этот чип обладает меньшим объемом flash-памяти, энергонезависимой памяти, а так же пониженной тактовой частотой. Так как цена разных версий Arduino Pro Mini практически не отличается мы поговорим о старшей версии с чипом ATmega328 и тактовой частотой 16 МГц.

Arduino Pro Mini 5 В

Эта версия снабжена микроконтроллером ATmega328. В отличии от своего младшего собрата, он имеет вдвое большие объемы энергонезависимой и flash памяти. И может похвастаться тактовой частотой в 16 МГц. Узнать о способах прошивки этого микроконтроллера вы можете в моей статье:

Характеристики

  • Микроконтроллер: ATmega168 или ATmega328
  • Предельное напряжение питания: 3,3-12 В и 5-12 В
  • Цифровых вводов/выводов: 14
  • ШИМ: 6 цифровых пинов могут быть использованы как выводы ШИМ
  • Аналоговые выводы: 8
  • Максимальная сила тока: 40 mAh с одного вывода и 400 mAh со всех выводов.
  • Flash память: 16 кб
  • SRAM: 1 кб
  • EEPROM: 512 байт
  • Тактовая частота: 8 МГц и 16 МГц

Подключение питания к Arduino Pro Mini

Этот микроконтроллер можно питать тремя способами:

  • Переходником FTDI, подключенному к 6 соответствующим пинам.
  • Подавая стабилизированное напряжение на вывод Vcc. 3,3 В или 5 В в зависимости от версии
  • Подавая напряжение на вывод RAW. 3,3-12 В или 5-12 В в зависимости от версии

Как уже было написано выше, плата имеет 14 цифровых пинов. На плате они помечены порядковым номером. Они могут быть как входом так и выходом. Рабочее напряжение этих пинов составляет 3,3 В или 5 В.

Аналоговые пины на плате помечены ведущей «A». Эти пины являются входами и не имеют подтягивающих резисторов. Они измеряют поступающее на них напряжение и возвращают значение от 0 до 1024 при использовании функции analogRead(). Эти пины измеряют напряжение с точностью до 0,005 В.

Широтно-импульсная модуляция (ШИМ) Arduino Pro Mini

ШИМ выходы у этой платы никак не помечены. Нужно просто запомнить номера цифровых выводов, которые подключены к широтно-импульсному генератору. У Arduino Pro Mini есть 6 выводов ШИМ, это пины 3, 5, 6, 9, 10 и 11. Для использования ШИМ у Arduino есть специальная функция .

Другие пины:

  • 0(Rx) и 1(Tx) используются для передачи данных по последовательному интерфейсу.
  • Выводы 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK) рассчитаны для связи по интерфейсу SPI.
  • Так же на выводе D13 имеется встроенный в плату светодиод.
  • А4 (SDA) и А5 (SCL) могут использоваться для связи с другими устройствами по шине I2C. Подробнее про этот интерфейс вы можете почитать на википедии . В среде разработке Arduino IDE есть встроенная библиотека «wire.h» для более легкой работы с I2C.

Физические характеристики

Arduino Pro Mini имеет следующие размеры: длина 33 мм и ширина 18 мм, а весит всего около 10 грамм. Расстояние между выводами равняется 2,54 мм.


Распиновка и характеристики одной из самых удобных плат Arduino — Pro Mini

Коммуникации

Характеристики

Microcontroller ATmega328
Рабочее напряжение Есть есть 2 модели — 3.3 вольтовые и пятивольтовые. Как узнать какая попалась вам? Скорее всего написано на плате. Если же нет, просто подайте на RAW 5 вольт и на VCC померяйте напряжение. Если там 5 воольт то у вас 5 вольтовая, если 3.3 — то 3.3 вольтовая.
Напряжение питания 3.35 — 12 V (если модель рассчитана на 3.3V) или 5 — 12 V (для 5V моделей)
Цифровые выходы 14 (6 из них поддерживают ШИМ)
Аналоговые выходы 6
Максимальный ток для вывода 40 mA
Флешка 32 kB (0.5 kB из которых занимает загрузчик)
Оперативная память 2 kB
EEPROM 1 kB
Тактовая частота 8 МГц для 3х вольтовых моделей или 16 МГц для 5V моделей

Питание

На плате Arduino Pro Mini есть 2 вывода для «плюса» питания RAW и VCC и общий вывод «минус» GND. Если вы уверены что источник питания выдает ровно 5 вольт (или 3.3 для трехвольтовой версии платы), то можно включить питание напрямую в VCC. Если же напряжение питания больше 5 вольт — необходимо подключать его к выводу RAW — там стоит весьма низкопробный стабилизатор напряжения.

Кроме того, если необходимо снизить потребление платы, например если ваша поделка работает от солнечной батареи, лучше использовать вывод VCC и выдрать из платы светодиоды и стабилизатор напряжения — такая мелкая пятиногая микросхема.

Отладочная плата Arduino Pro Mini построена на микроконтроллере ATmega328. Она имеет 14 цифровых входных/выходных выводов (6 из которых могут использоваться в качестве ШИМ выходов), 6 аналоговых входов, кварцевый резонатор, кнопку перезагрузки и отверстия для монтажа выводных разъемов. Шестипиновый разъем может быть подключен к FTDI кабелю для подачи питания от USB и для установки связи с платой.

Arduino Pro Mini предназначена для полупостоянной установки в устройства. Плата поставляется без предустановленных разъемов, позволяя вам использовать различные типы разъемов или припаивать провода напрямую. Существует две версии Arduino Pro Mini. Первая работает с 3,3В и 8МГц, вторая - с 5В и 16МГц.

Arduino Pro Mini была разработана и производится SparkFun Electronics.

Технические характеристики

Микроконтроллер ATmega328 *
Питание платы 3,35-12 В (для модели 3,3В) или 5-12 В (для модели 5В)
Рабочее напряжение 3,3В или 5В в зависимости от модели
Цифровые входные/выходные выводы 14
ШИМ каналы 6
UART 1
SPI 1
I2C 1
Аналоговые входные выводы 6
Внешние прерывания 2
Постоянный ток через входные/выходные выводы 40 мА
Флеш-память 32 Кб, из которых 2 Кб используются загрузчиком *
Оперативная память SRAM 2 Кб *
Энергонезависимая память EEPROM 1 Кб *
Тактовая частота 8 МГц (версии 3,3В) или 16 МГц (версии 5В)

Более старые платы были оснащены микроконтроллером ATmega168 со следующими характеристиками:

  • флеш-память: 16 Кб;
  • SRAM: 1 Кб;
  • EEPROM: 512 б.

Документация

Схемы, разводка платы

Arduino Pro Mini является открытой аппаратной платформой. Вы можете изготовить собственную плату, используя следующие файлы:

Питание

Arduino Pro Mini может питаться через FTDI кабель, подключенный к ее шестипиновому разъему, или стабилизированным источником напряжения 3,3В или 5В (в зависимости от модели) через вывод Vcc. Стабилизатор напряжения на плате может работать с постоянными напряжениями до 12 вольт. Если вы будете подавать на плату нестабилизированное напряжение, используйте вывод RAW, а не VCC. На плате расположены следующие выводы питания:

  • RAW для подачи на плату нестабилизированного напряжения;
  • VCC для подачи на плату стабилизированного напряжения 3,3 или 5 вольт;
  • GND вывод земли.

Память

ATmega328 обладает 32 килобайтами флэш-памяти для хранения кода программы (из которых 2 килобайта используется загрузчиком), 2 килобайтами SRAM и 1 килобайтом EEPROM (которая может быть считана и записана с помощью библиотеки EEPROM).

Входы и выходы

Каждый из 14 цифровых выводов Arduino Pro Mini может быть использован и как вход, и как выход, с помощью функций pinMode() , digitalWrite() и digitalRead . Они работают с напряжением 3,3 или 5 вольт (в зависимости от модели). Каждый вывод может пропускать максимальный ток 40 мА и имеет внутренний подтягивающий резистор (по умолчанию отключен) 20-50 кОм.

Также некоторые выводы обладают специальными функциями:

  • последовательный порт: 0 (RX) и 1 (TX) . Выводы используются для приема (RX) и передачи (TX) последовательных данных с TTL уровнями. Эти выводы подключены к выводам TX0 и RX1 шестипинового разъема;
  • внешние прерывания: 2 и 3 . Эти выводы могут быть сконфигурированы для вызова прерывания по фронту или по спаду импульса или по изменению уровня на выводе. Смотрите работу с прерываниями на Arduino для более подробной информации;
  • ШИМ: выводы 3, 5, 6, 9, 10 и 11 . Обеспечивают 8-битный ШИМ выход с помощью функции analogWrite() ;
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK) . Эти выводы поддерживают связь через SPI ;
  • светодиод: 13 . Встроенный светодиод подключен к цифровому выводу 13. При высоком уровне на выводе светодиод загорается, при низком - гаснет.
  • I2C: A4 (SDA) и A5 (SCL) . Поддерживают связь через TWI с помощью библиотеки Wire ;

Arduino Pro Mini имеет 8 аналоговых входов, каждый из которых обеспечивает 10-битное разрешение (т.е. 1024 разных значений). Четыре из них расположены на разъемах на краю платы, два (входы 4 и 5) - на отверстиях на плате. Аналоговые выводы измеряют напряжение от нуля до VCC.

И еще один вывод на плате:

  • Reset . Низкий уровень на этом выводе приводит к перезагрузке микроконтроллера. Обычно используется для добавления кнопки сброса на платы расширения, закрывающей доступ к кнопке сброса на самой плате Arduino.

Связь

Плата Arduino Pro Mini обладает рядом возможностей для связи с компьютером, с другой платой или с другими микроконтроллерами. ATmega328 обеспечивает аппаратный UART порт, доступный на цифровых выводах 0 (RX) и 1 (TX), для последовательной связи с TTL уровнями. Arduino IDE включает в себя монитор последовательного порта, который позволяет посылать и принимать от платы простые текстовые данные через USB соединение.

Библиотека SoftwareSerial позволяте организовать последовательную связь через любые цифровые выводы Arduino Pro Mini.

ATmega328 также поддерживает связь через I2C (TWI) и SPI. Arduino IDE включает в себя библиотеку Wire для упрощения использования шины I2C. Для связи через SPI смотрите техническое описание на ATmega328.

Программирование

Arduino Pro Mini может быть запрограммирована с помощью Arduino IDE.

ATmega328 на Arduino Pro Mini поставляется с уже зашитым загрузчиком, что позволяет вам загружать в микроконтроллер новый код программы без использования внешнего аппаратного программатора. Связь осуществляется с помощью протокола STK500.

Вы можете также обойти загрузчик и прошить микроконтроллер с помощью внешнего программатора.

Автоматическая (программная) перезагрузка

Вместо того, чтобы требовать физического нажатия кнопки перезагрузки перед прошивкой кода новой программы, Arduino Pro Mini спроектирована таким образом, что она позволяет перезагружать ее с помощью программного обеспечения, запущенного на подключенном компьютере. Один из выводов 6-пинового разъема подключен к линии сброса ATmega328 через конденсатор 100 нФ. Этот вывод подключает одну из линий управления потоком преобразователя USB/последовательный порт, подключенную к разъему: RTS при использовании FTDI кабеля, DTR при использовании адаптера Sparkfun. Когда на этой линии появляется низкий уровень на достаточно долгое время, микросхема перезагружается. Arduino IDE использует эту возможность, чтобы позволить вам загрузить код, просто нажав кнопку загрузки в Arduino IDE. Такая архитектура позволяет уменьшить таймаут загрузчика, поскольку процесс прошивки всегда синхронизирован со спадом сигнала на линии RESET.

Однако эта система может приводить и к другим последствиям. При подключении Arduino Pro Mini к компьютерам, работающим на Mac OS X или Linux, микроконтроллер будет сбрасываться при каждом соединении программного обеспечения с платой (через USB). На следующие полсекунды после сброса на Arduino Pro Mini активизируется загрузчик. Несмотря на то, что загрузчик запрограммирован игнорировать посторонние данные (т.е. все данные, не касающиеся процесса прошивки новой программы), он может перехватить несколько первых байт данных из посылки, отправляемой плате сразу после установки соединения. Соответственно, если в программе, работающей на Arduino Pro Mini, предусмотрено получение от компьютера каких-либо настроек или других данных при первом запуске, убедитесь, что программное обеспечение, с которым взаимодействует Arduino Pro Mini, осуществляет отправку спустя секунду после установки соединения.

В жизни начинающего ардуинщика рано или поздно наступает момент, когда хочется сэкономить на размере своего изделия, не жертвуя при этом функциональностью. И тогда Arduino Pro Mini - отличное для этого решение! За счёт того, что у этой платы отсутствует встроенный USB-разъём, она в полтора раза меньше Arduino Nano. Но для того, чтобы её запрограммировать, придётся приобрести дополнительный - внешний - USB-программатор. О том, как «залить» написанную программу в память микроконтроллера и заставить Arduino Pro Mini работать, и пойдёт речь в этой статье.

Инструкция по программированию Arduino Pro Mini программатором

Нам понадобится:

  • соединительные провода (рекомендую вот такой набор проводов);
  • компьютер c Arduino IDE.

1 Программатор для Arduino

Сначала пара слов о самом программаторе. Купить такой можно за 2 доллара в любом китайском интернет-магазине, например, в этом .

  • Разъём типа USB-A используется, понятно, для подключения программатора к компьютеру.
  • ISP-соединитель нужен для подключения к программируемой плате.
  • Джампер JP1 контролирует напряжение на выводе VCC ISP-коннектора. Оно может быть 3,3 В или 5 В. Если целевое программируемое устройство имеет собственный источник питания, нужно убрать перемычку.
  • Джампер JP2 используется для перепрошивки самого программатора; в данной статье этот вопрос не рассматривается.
  • Перемычка JP3 нужна, если тактовая частота целевого устройства ниже 1,5 МГц.
  • Светодиоды показывают: G - питание подаётся на программатор, R - программатор соединён с целевым устройством.

2 Установка драйвера для программатора

Подключим программатор к USB-порту компьютера. Скорее всего, через какое-то небольшое время операционная система сообщит, что ей не удалось найти драйвер для данного устройства.


В этом случае скачаем драйвер для программатора с официального сайта . Распакуем архив и установим драйвер стандартным способом. В диспетчере устройств должен появиться программатор USBasp. Теперь программатор готов к работе. Отключаем его от компьютера.


Если вы испытываете трудности с установкой драйвера для USBasp программатора, то вам поможет статья

– компактная версия платформы Arduino, предназначенная для построения всевозможных проектов, имеющих не большие размеры. Платформа на 100% совместима с другими платформами Arduino, например такой как Arduino UNO, но намного компактнее её. В данной статье я сделаю обзор на китайский аналог Arduino Pro mini, расскажу чем она отличается от оригинала, чем данная плата отличается от других плат платформы Arduino, а так же расскажу как подключить её к компьютеру для заливки в неё скетч. В завершении убедимся в работоспособности платы, на примере скетча «blink».

Вот этот аналог Arduino Pro mini я купил на Aliexpress за $1.30, в то время как оригинальная плата на сайте производителя стоит €13. Разница в цене - это первое главное отличие китайского аналога от оригинала.

Плата пришла в антистатическом пакете. В комплекте так же находились контактные площадки.

Для сравнения, верхняя плата - оригинальная Arduino Pro mini, ниже, мой китайский аналог. По количеству и расположению контактов, плата идентична оригиналу, кроме контактов А4, А5, А6 и А7. На оригинальной плате эти контакты расположены в центре, на аналоге они находятся слева.

Для того что бы иметь визуальное представление о размерах платы, приведу её рядом со своим китайским аналогом Arduino UNO. Pro mini удалось уменьшить в размерах за счёт удаления USB разъёма, схемы согласования платы с USB портом, также был удалён разъём питания. Китайский аналог на 100% совместим со всеми модулями, драйверами, датчиками, которые работают с оригинальной версией.

Оригинальная современная плата Arduino Pro mini построена на базе микроконтроллера ATmega328 , на том же самом что и Arduino UNO . Более ранние модели этой платы строились на микроконтроллере ATmega168 .

Китайские же аналоги Arduino Pro mini на данный момент строятся как на ATmega328 , так и на ATmega168 . В этом второе отличие оригинала от аналога. Плата на ATmega168 будет стоить дешевле, чем на ATmega328. Главное же отличие этих контроллеров в том, что ATmega328 содержит на борту в два раза больше памяти, чем ATmega168.

Отличия микроконтроллеров

ATmega168

ATmega328

16 Kбайт

Но это не значит, что на ATmega168 не получится построить проект, который разрабатывался на плате с ATmega328, ведь 16 Кбайт будет вполне достаточно для многих скетчей. Всё же, если вам необходим двойной объём памяти, изучайте описание платы перед покупкой. При покупке своего китайского аналога, я выбрал плату за $1.30 с ATmega168, вместо платы с ATmega328 за $1.93. Как видно, здесь тоже можем сэкономить на покупке.

Оригинальная плата Pro mini производится с двумя вариантами питания: на 5 и 3,3 вольта. У версии, работающей от 3,3 вольта, микроконтроллер работает на частоте 8 МГц, у 5-ти вольтовой версии - на частоте 16 МГц. Китайские аналоги так же производятся в 2-х вариантах. Моя плата работает от 5 вольт.
Визуально частоту работы контроллера можно определить по установленному на плате кварцу, если он в большом корпусе, на нём отчётливо можно увидеть частоту, на которой он работает: 8 или 16 МГц.

Фрагменты плат с кварцами, работающими на разной частоте.

Про питание Arduino Pro mini.

Для питания платы предназначены выводы GND, VCC и RAW.
GND - это минус питания (земля).
VCC – используется для подачи питания 3,3 или 5 вольт, в зависимости от версии платы. На этот разъём подаётся строго то напряжение, на которое рассчитана плата. Напряжение с этого контакта идёт напрямую на микроконтроллер, если оно будет выше необходимого, последний может выйти со строя.
Если питать плату собираетесь большим напряжением, тогда «+» питания следует подключать к разъёму RAW . На этот разъём можно подавать до 12 в, не зависимо, на какое напряжения рассчитана плата. Напряжение с этого контакта подаётся на стабилизатор напряжения, который преобразует его до необходимого значения, а уже затем подаётся на контролер.

Если так получилось что вы купили плату и не знаете на какое напряжение она рассчитана, подайте на разъём RAW 5 вольт и измерьте напряжение на разъёме VCC. Если плата рассчитана на 3,3 вольта, то соответствующее напряжение будет и на VCC, если будет на VCC 5 вольт, значит плата 5-ти вольтовая.

Цифровые и аналоговые выходы Pro mini соответствуют количеству выходов как и у платы UNO: 14 цифровых и 6 аналоговых. Контакты А4 (SDA) и А5 (SCL) используются для подключения различных устройств по шине I2C.

Про прошивку Arduino Pro mini.

Став одной из самых маленьких плат платформы Arduino, плата Pro mini обрела недостаток - нельзя прошить плату без сторонней помощи. Расскажу про все возможные способы заливки скетчей в Pro mini.

Прошивка Arduino Pro mini с помощью платы Arduino UNO.

Это не самый простой способ, поскольку не у каждого имеется плата UNO и покупать её специально для прошивки плат Pro mini не целесообразно. Но поскольку у меня имеется китайский аналог UNO , я начну с этого способа. Для реализации этого способа, должен быть установлен драйвер на плату UNO и определён номер COM - порта, к которому эта плата подключена. Как это сделать, описано в статье про китайский аналог Arduino UNO.

Соединяем платы как на картинке. Выводы GND , TX и RX соединяем с аналогичными. Вывод «VCC » на плате Pro mini соединяем с выводом «5V » или «3V3 » на плате UNO. Если у вас 5 вольтовая версия Pro mini, то соединяете с выводом «5V», как в моём варианте. Если версия 3-х вольтовая, подключаете к «3V3» на плате UNO. Вывод RESET на плате UNO подключаем к выводу DTR на плате Pro mini. На оригинальной плате вывод DTR обозначен как GRN , в общем это одно и то же.

Когда всё подключено, запускаем Arduino IDE .



Выбираем плату в которую нужно зашить скетч: «Инструменты » - «Плата: » и выбираем свою плату, в данном случае это « Arduino Pro or Pro Mini ».

Поскольку платы Pro Mini могут использовать различные микроконтроллеры (ATmega168 или ATmega328), а так же различное напряжение питания (3,3 v или 5v ), выбираем свою конфигурацию: «Инструменты » - «Процессор: » в данном примере выбираю «ATmega168 (5 V, 16 M H z) ».

Выбираем порт, к которому подключена плата UNO: «Инструменты » - «Порт: » в моём случае это « COM7 ».

Попробуем залить первый скетч и убедится в работоспособности платы. Выбираем скетч « Blink », смысл которого - мигать встроенным в плату светодиодом: «Файл » - «Образцы » - «01. Basics » - « Blink ».

С помощью кнопок «Проверить » и «Вгрузить » проверяется скетч на ошибки и загружается в плату. Если нет ошибок, синий светодиод начнём мигать на плате Pro Mini.

Можно поиграться значениями в скетче и изменить время горения светодиода и время погашенного светодиода, вновь залить скетч и увидеть, что светодиод будет мигать по-другому.

Прошивка Arduino Pro mini с помощью переходника USB to TTL.

Об одном из таких переходников на чипе PL2303 я как то уже рассказывал , теперь пришло время его испытать на практике. Существует две версии этого переходника, один без контакта GRN (DTR), как у меня, второй с данным контактом. Те что с контактом, стоят как минимум в два раза дороже тех, что без контакта.

Если будете использовать переходник без контакта GRN (DTR), подключаете его к Pro mini как на картинке.

Если у вас будет 3-х вольтовый вариант Pro mini, то контакт VCC платы, нужно соединить с контактом 3V3 USB переходника.

Когда всё подключено, запускаем Arduino IDE. Выбираем версию платы, процессор и порт, выбираем скетч «Blink», всё так же, как в приведённом выше примере с UNO.

Для заливки скетча необходимо:
1. Нажать на кнопку «Вгрузить ».
2. Начнётся процесс компиляции скетча, о чём можно понять по надписи «Компиляция скетча... ».
3. Как только данная надпись сменится на «Вгружаем... ».
4. Кратковременно нажимаем на плате Pro mini кнопку RESET .
5. Скетч зальётся в плату, об успешном окончании можно будем наблюдать за надписью «Взрузили » и по мигающему светодиоду на плате.

Если у вас в руках окажется переходника USB to TTL, с контактом DTR (он же GRN, RESET) соедините его с соответствующим контактом RESET на плате Pro mini. В таком случае, при заливки скетча, кнопку RESET нажимать не придётся, плата сама сделает сброс.

Данный переходник так же как и на PL2303 позволяет прошивать плату Arduino. Схема подключения следующая:

Существуют так же другие USB переходники для прошивки Arduino Pro mini, например на микросхеме FT232, но ввиду того что этот переходник стоит дороже, я его не беру во внимание.

Прошивка Arduino Pro mini с помощью программатора на CH341A.

Программатор на микросхеме CH341A может работать в режиме UART, а значит им можно прошить Arduino Pro mini.

Программатор может быть представлен в разном визуальном оформлении, основное отличие это цена и наличие дополнительных контактов. Среди этих контактов например, дополнительно может быть разведён контакт на +5В. На том который купил я не было этого контакта, пришлось подпаиваться на плате, что бы получить это напряжение.

Что бы использовать данный программатор как UART переходник, нужно разомкнуть контакты P/S .

Для подключения к Pro mini понадобятся контакты на программаторе: Tx , Rx , GND и +5В . Ещё одна особенность этого программатора в том, что на его борту имеется контакт DTR , соединив который с платой Pro mini, отпадёт необходимость нажимать кнопку Reset , при заливки скетча. Для задействования этого контакта, нужно использовать контакт MOSI , в режиме UART он работает как DTR .

В моём варианте программатора, контакт +5В не был выведен, пришлось это напряжения взять с ножки стабилизатора. В конечном варианте подключение следующее:

Pro mini CH341A
Tx Rx
Rx Tx
DTR MOSI
GND GND
VCC +5В

Скачать драйвер: Яndex-диск MEGA Облако mail@ru

После установки драйвера, в "Диспетчере устройств" появится виртуальный COM-порт. Заливка скетчей происходит так же, как и через переходники PL2303 / CH340G, с той лишь разницей, что не нужно нажимать кнопку Reset .

Следует отметить, данный программатор можно подключать только к 5 вольтовым платам Arduino, поскольку он использует уровни 5 вольт! Это же касается и других устройств, для которых нужен UART переходник.

Прошивка Arduino Pro mini через COM - порт.

Напрямую прошить плату через COM – порт не получится, поскольку у COM – порта и Pro mini разные логические уровни. Для их согласования нужно применить переходник на микросхеме MAX232. Сама микросхема не дорогая, но не знаю, стоит ли заморачиваться для прошивки Pro mini сборкой такого переходника, если по цене выйдет не дешевле, чем купить USB переходник на .

В любом случае представляю схему.

Что бы убедится в работоспособности этого метода, пришлось самому собрать эту схему на макетной плате. Плата в процессе...