Что представляет собой сигнал. Виды электрических сигналов

Аналоговые, дискретные и цифровые сигналы

Одной из тенденций развития современных систем связи является широкое применение в них дискретно-аналоговой и цифровой обработки сигналов (ДАО и ЦОС).

Аналоговый сигнал Z’(t), первоначально используемый в радиотехнике, может быть представлен в виде непрерывного графика (рис. 2.10а). К аналоговым сигналам относят АМ-, ЧМ-, ФМ-сигналы, сигналы телеметрического датчика и др. Устройства, в которых обрабатываются аналоговые сигналы, называются устройствами аналоговой обработки. К таким устройствам относятся преобразователи частоты, различные усилители, фильтры LC и др.

Оптимальный приём аналоговых сигналов, как правило, предусматривает алгоритм оптимальной линейной фильтрации, которая актуальна особенно при использовании сложных шумоподобных сигналов. Однако именно в этом случае построение согласованного фильтра представляет большую сложность. При использовании согласованных фильтров на основе многоотводных линий задержки (магнитострикционных, кварцевых и др.) получаются большие затухания, габариты и нестабильность задержки. Перспективны фильтры на поверхностных акустических волнах (ПАВ), но малые длительности обрабатываемых в них сигналов и сложность перестройки параметров фильтров ограничивают область их применения.

На смену аналоговым РЭС в 40-х годах пришли устройства дискретной обработки аналоговых входных процессов. Эти устройства обеспечивают дискретно-аналоговую обработку (ДАО) сигналов и обладают большими возможностями. Здесь применяется сигнал дискретный по времени, непрерывный по состояниям. Такой сигнал Z’(kT) представляет собой последовательность импульсов с амплитудами, равными значениям аналогового сигнала Z’(t) в дискретные моменты времени t=kT, где k=0,1,2,… - целые числа. Переход от непрерывного сигнала Z’(t) к последовательности импульсов Z’(kT) называется дискретизацией по времени.

Рисунок 2.10 Аналоговые, дискретные и цифровые сигналы

Рисунок 2.11 Дискретизация аналогового сигнала

Дискретизацию аналогового сигнала по времени может выполнить каскад совпадения «И» (рис. 2.11), на входе которого действует аналоговый сигнал Z’(t). Управляется каскад совпадения тактовым напряжением UT(t) – короткими импульсами длительностью tи, следующими с интервалами T>>tи.

Интервал дискретизации Т выбирается в соответствии с теоремой Котельникова T=1/2Fmax, где Fmax – максимальная частота в спектре аналогового сигнала. Частоту fд = 1/Т называют частотой дискретизации, а совокупность значений сигнала при 0, Т, 2Т,… - сигналом с амплитудо-импульсной модуляцией (АИМ).



До конца 50-х годов сигналы АИМ применялись только при преобразовании речевых сигналов. Для передачи по каналу радиорелейной связи АИМ сигнал преобразовывают в сигнал с фазоимпульсной модуляцией (ФИМ). При этом амплитуда импульсов постоянная, а информация о речевом сообщении содержится в отклонении (фазе) Dt импульса относительно некоторого среднего положения. Используя короткие импульсы одного сигнала, и, размещая между ними импульсы других сигналов, получают многоканальную связь (но не более 60 каналов).

В настоящее время ДАО усиленно развивается на основе применения «пожарных цепочек» (ПЦ) и приборов с зарядными связями (ПЗС).

В начале 70-х годов на сетях связи различных стран и СССР стали появляться системы с импульсно-кодовой модуляцией (ИКМ), где применяются сигналы в цифровой форме.

Процесс ИКМ представляет собой преобразование аналогового сигнала в цифры, состоит из трёх операций: дискретизация по времени через интервалы Т (рис.2.10,б), квантование по уровню (рис. 2.10,в) и кодирования (рис. 2.10,д). Операция дискретизации по времени рассмотрена выше. Операция квантования по уровню заключается в том, что последовательность импульсов, амплитуды которых соответствуют значениям аналогового 3 сигнала в дискретные моменты времени, заменяется последовательностью импульсов амплитуды которых могут принимать только ограниченное число фиксированных значений. Эта операция приводит к ошибке квантования (рис.2.10,г).

Сигнал ZКВ’(kT) является дискретным сигналом как по времени, так и по состояниям. Возможные значения u0, u1,…,uN-1 сигнала Z’(kT) на приёмной стороне известны, поэтому передают не значения uk, которое сигнал принял на интервале Т, а только его номер уровня k. На приёмной стороне по принятому номеру k восстанавливают значение uk. В этом случае передаче подлежат последовательности чисел в двоичной системе счисления – кодовые слова.



Процесс кодирования заключается в преобразовании квантованного сигнала Z’(kT) в последовательность кодовых слов {x(kT)}. На рис. 2.10,д изображены кодовые слова в виде последовательности двоичных кодовых комбинаций при использовании трёх разрядов.

Рассмотренные операции ИКМ применяются в РПУ с ЦОС, при этом ИКМ необходима не только для аналоговых сигналов, но и для цифровых.

Покажем необходимость ИКМ при приёме цифровых сигналов по радиоканалу. Так, при передаче в декаметровом диапазоне элемент xxxxxxxxxxxxxxxxxxxxxxа цифрового сигнала xi(kT) (i=0,1), отражающего n-ой элемент кода, ожидаемый сигнал на входе РПУ вместе с аддитивной помехой ξ(t) можно представить в виде:

z / i (t)= µx(kT) + ξ(t) , (2.2)

при (0 ≤ t ≥ TЭ),

где μ- коэффициент передачи канала, ТЭ – время длительности элемента сигнала. Из (2.2) видно, что помехи на входе РПУ образуют множество сигналов, представляющих собой аналоговое колебание.

Примерами цифровых схем являются логические элементы, регистры, триггеры, счетчики, запоминающие устройства и др. По количеству узлов на ИС и БИС, РПУ с ЦОС делят на две группы:

1. Аналого-цифровые РПУ, которые имеют реализованные на ИС отдельные узлы: синтезатор частоты, фильтры, демодулятор, АРУ и др.

2. Цифровые радиоприёмные устройства (ЦРПУ), в которых сигнал обрабатывается после аналого-цифрового преобразователя (АЦП).

На рис. 2.12 показаны элементы основного (информационного канала) ЦРПУ декаметрового диапазона:: аналоговая часть приёмного тракта (АЧПТ), АЦП (состоящий из дискретизатора, квантователя и кодера), цифровая часть приёмного тракта (ЦЧПТ), цифро-аналоговый преобразователь (ЦАП) и фильтр нижних частот (ФНЧ). Двойные линии обозначают передачу цифровых сигналов (кодов), а одинарные – аналоговых и АИМ сигналов.

Рисунок 2.12 Элементы основного (информационного канала) ЦРПУ декаметрового диапазона

АЧПТ производит предварительную частотную избирательность, значительное усиление и преобразование сигнала Z’(T) по частоте. АЦП преобразует аналоговый сигнал Z’(T) в цифровой x(kT) (рис. 2.10,д).

В ЦЧПТ как правило производится дополнительное преобразование по частоте, избирательность (в цифровом фильтре – основной избирательности) и цифровая демодуляция аналоговых и дискретных сообщений (частотной, относительной фазовой и амплитудной телеграфии). На выходе ЦЧПТ получаем цифровой сигнал y(kT) (рис. 2.10,е). Этот сигнал, обработанный по заданному алгоритму, с выхода ЦЧПТ поступает в ЦАП или в запоминающее устройство ЭВМ (при приёме данных).

В последовательно включённых ЦАП и ФНЧ, цифровой сигнал y(kT) преобразуется вначале в непрерывный по времени и дискретный по состояниям сигнал y(t), а затем в yФ(t), который непрерывный по времени и по состояниям (рис. 2.10,ж, з).

Из многих методов цифровой обработки сигналов в ЦРПУ важнейшими являются цифровая фильтрация и демодуляция. Рассмотрим алгоритмы и структуру цифрового фильтра (ЦФ) и цифрового демодулятора (ЦД).

Цифровой фильтр – это дискретная система (физическое устройство или программа для ЭВМ). В нём последовательность числовых отсчётов {x(kT)}входного сигнала преобразуется в последовательность {y(kT)}выходного сигнала.

Основными алгоритмами ЦФ являются: линейное разностное уравнение, уравнение дискретной свёртки, операторная передаточная функция в z-плоскости и частотная характеристика.

Уравнения, которые описывают последовательности чисел (импульсов) на входе и выходе ЦФ (дискретной системы с задержкой), называются линейными разностными уравнениями.

Линейное разностное уравнение рекурсивного ЦФ имеет вид:

, (2.3)

где x[(k-m)T] и y[(k-n)T] – значения входных и выходных последовательностей числовых отсчётов в моменты времени (k-m)T и (k-n)Т соответственно; m и n – число задержанных суммируемых предыдущих входных и выходных числовых отсчётов соответственно;

a0, a1, …, am и b1, b2, …, bn – вещественные весовые коэффициенты.

В (3) первое слагаемое является линейным разностным уравнением нерекурсивного ЦФ. Уравнение дискретной свёртки ЦФ получают из линейного разностного нерекурсивного ЦФ путём замены в нём al на h(lT):

, (2.4)

где h(lT) – импульсная характеристика ЦФ, представляющая собой отклик на единичный импульс.

Операторная передаточная функция есть отношение преобразованных по Лапласу функций на выходе и входе ЦФ:

, (2.5)

Эту функцию получают непосредственно из разностных уравнений, применяя дискретное преобразование Лапласа и теорему смещения.

Под дискретным преобразованием Лапласа, например, последовательности {x(kT)} понимается получение L – изображения вида

, (2.6)

где p=s+jw - комплексный оператор Лапласа.

Теорему смещения (сдвига) применительно к дискретным функциям можно сформулировать: смещение независимой переменной оригинала во времени на ±mT соответствует умножению L –изображения на . Например,

Учитывая свойства линейности дискретного преобразования Лапласа и теорему смещения, выходная последовательность чисел нерекурсивного ЦФ примет вид

, (2.8)

Тогда операторная передаточная функция нерекурсивного ЦФ:

, (2.9)

Рисунок 2.13

Аналогично, учитывая формулу (2.3), получим операторную передаточную функцию рекурсивного ЦФ:

, (2.10)

Формулы операторных передаточных функций имеют сложный вид. Поэтому большие трудности возникают при исследовании полей и полюсов (корней рис. 2.13 полинома числителя и корней полинома знаменателя), которые в р-плоскости имеют периодическую по частоте структуру.

Анализ и синтез ЦФ упрощается при применении z – преобразования, когда переходят к новой комплексной переменной z, связанной с p соотношением z=epT или z-1=e-рT. Здесь комплексная плоскость р=s+jw отображается другой комплексной плоскостью z=x+jy. Для этого необходимо, чтобы es+jw=x+jy. На рис. 2.13 показаны комплексные плоскости р и z.

Сделав замену переменных e-pT=z-1 в (2.9) и (2.10), получим передаточные функции в z-плоскости соответственно для нерекурсивного и рекурсивного ЦФ:

, (2.11)

, (2.12)

Передаточная функция нерекурсивного ЦФ имеет только нули, поэтому он абсолютно устойчив. Рекурсивный ЦФ будет устойчивым, если его полюсы будут расположены внутри единичного круга z-плоскости.

Передаточная функция ЦФ в виде полинома по отрицательным степеням переменной z дает возможность непосредственно по виду функции HЦ(z) составить структурную схему ЦФ. Переменную z-1 называют оператором единичной задержки, а на структурных схемах это элемент задержки. Поэтому старшие степени числителя и знаменателя передаточной функции HЦ(z)рек определяют количество элементов задержки соответственно в нерекурсивной и рекурсивной частях ЦФ.

Частотную характеристику ЦФ получают непосредственно из его передаточной функции в z-плоскости путём замены z на ejl (или z-1 на e-jl) и проведения необходимых преобразований. Поэтому частотную характеристику можно записать в виде:

, (2.13)

где КЦ(l) – амплитудно-частотная (АЧХ), а φ(l) – фазочастотная характеристики ЦФ; l=2 f’ - цифровая частота; f ’=f/fД – относительная частота; f – циклическая частота.

Характеристика КЦ(jl) ЦФ является периодической функцией цифровой частоты l с периодом 2 (или единице в относительных частотах). Действительно, ejl±jn2 = ejl ±jn2 = ejl, т.к. по формуле Эйлера ejn2 =cosn2 +jsinn2 = 1.

Рисунок 2.14 Структурная схема колебательного контура

В радиотехнике при аналоговой обработке сигнала простейшим частотным фильтром является колебательный контур LC. Покажем, что при цифровой обработке простейшим частотным фильтром является рекурсивное звено второго порядка, передаточная функция в z-плоскости которого

, (2.14)

а структурная схема имеет вид, изображенный на рис. 2.14. Здесь оператор Z-1 является дискретным элементом задержки на один такт работы ЦФ, линии со стрелками обозначают умножение на a0, b2, и b1, «блок +» обозначает сумматор.

Для упрощения анализа в выражении (2.14) примем a0=1, представив его по положительным степеням z, получим

, (2.15)

Передаточная функция цифрового резонатора также как и колебательный LC-контур зависит только от параметров цепи. Роль L,C,R выполняют коэффициенты b1 и b2.

Из (2.15) видно, что передаточная функция рекурсивного звена второго порядка имеет в плоскости z ноль второй кратности (в точки z=0) и два полюса

и

Уравнение частотной характеристики рекурсивного звена второго порядка получим из (2.14), заменяя z-1 на e-jl (при a0=1):

, (2.16)

Амплитудно-частотная характеристика равна модулю (2.16):

После проведения элементарных преобразований. АЧХ рекурсивного звена второго порядка примет вид:

Рисунок 2.15 График рекурсивного звена второго порядка

На рис. 2.15 изображены графики в соответствии с (2.18) при b1=0. Из графиков видно, что рекурсивное звено второго порядка является узкополосной избирательной системой, т.е. цифровым резонатором. Здесь показан только рабочий участок частотного диапазона резонатора f ’<0,5. Далее характери-стики повторяются с интервалом fД

Исследования показывают, что резонансная частота f0’ будет принимать следующие значения:

f0’=fД/4 при b1=0;

f0’0;

f0’>fД/4 при b1<0.

Значения b1 и b2 изменяют как резонансную частоту, так и добротность резонатора. Если b1 выбирать из условия

, где , то b1 и b2 будут влиять только на добротность (f0’=const). Перестройку частоты резонатора можно обеспечить изменением fД.

Цифровой демодулятор

Цифровой демодулятор в общей теории связи рассматривается как вычислительное устройство, которое выполняет обработку смеси сигнала и помех.

Определим алгоритмы ЦД при обработке аналоговых сигналов АМ и ЧМ с высоким отношением сигнал/шум. Для этого представим комплексную огибающую Z / (t) узкополосной аналоговой смеси сигнала и помех Z’(t) на выходе АЧПТ в показательной и алгебраической форме:

и

, (2.20)

является огибающей и полной фазой смеси, а ZC(t) и ZS(t) – квадратурные составляющие.

Из (2.20) видно, что огибающая сигнала Z(t) содержит полную информацию о законе модуляции. Поэтому цифровой алгоритм обработки аналогового АМ-сигнала в ЦД с использованием квадратурных составляющих XC(kT) и XS(kT) цифрового сигнала x(kT) имеет вид:

Известно, что частота сигнала является первой производной от его фазы, т.е.

, (2.22)

Тогда из (2.20) и (2.22) следует:

, (2.23)

Рисунок 2.16 Структурная схема ЦЧПТ

Используя в (2.23) квадратурные составляющие XC(kT) b XS(kT) цифрового сигнала x(kT) и заменяя производные первыми разностями, получим цифровой алгоритм обработки аналогового ЧМ-сигнала в ЦД:

На рис. 2.16 показан вариант структурной схемы ЦЧПТ при приеме аналоговых сигналов АМ и ЧМ, которая состоит из квадратурного преобразователя (КП) и ЦД.

В КП образуются квадратурные составляющие комплексного цифрового сигнала путем перемножения сигнала x(kT) на две последовательности {cos(2πf 1 kT)} и {sin(2πf 1 kT)}, где f1 – центральная частота самого низкочастотного отображения спектра сигнала z’(t). На выходе перемножителей цифровые фильтры нижних частот (ЦФНЧ) обеспечивают подавление гармоник с частотой 2f1 и выделяют цифровые отсчеты квадратурных составляющих. Здесь ЦФНЧ используются в качестве цифрового фильтра основной избирательности. Структурная схема ЦД соответствует алгоритмам (2.21) и (2.24).

Рассмотренные алгоритмы цифровой обработки сигналов можно реализовать аппаратным методом (с помощью специализированных вычислителей на цифровых ИС, приборов с зарядной связью или приборов на поверхностно-акустических волнах) и в виде программ на ЭВМ.

При программной реализации алгоритма обработки сигналов ЭВМ выполняет арифметические операции над хранящимися в ней коэффициентами al, bl и переменными x(kT), y(kT).

Ранее недостатками вычислительных методов были: ограниченное быстродействие, наличие специфических погрешностей, необходимость переселекции, большая сложность и стоимость. В настоящее время эти ограничения успешно преодолеваются.

Преимуществами устройств цифровой обработки сигналов перед аналоговыми являются совершенные алгоритмы связанные с обучением и адаптацией сигналов, простота управления характеристиками, высокая временная и температурная стабильность параметров, высокая точность и возможность одновременной и независимой обработки нескольких сигналов.

Простые и сложные сигналы. База сигнала

Характеристики (параметры) систем связи улучшались по мере освоения видов сигналов и их способов приема, обработки (разделения). Каждый раз возникала необходимость в грамотном распределении ограниченного частотного ресурса между работающими радиостанциями. Параллельно этому решался вопрос уменьшения полосы излучения сигналами. Однако были проблемы при приеме сигналов, которые простым распределением частотного ресурса не реша­лись. Только применение статистического способа обработки сигналов – корреляционного анализа позволило решить эти проблемы.

Простые сигналы имеют базу сигнала

BS=TS*∆FS≈1, (2.25)

где TS – длительность сигнала; ∆FS – ширина спектра простого сигнала.

Системы связи, работающие на простых сигналах, называют узкополосными. У сложных (составных, шумоподобных) сигналов за время длительности сигнала TS происходит дополнительная модуляция (манипуляция) по частоте или по фазе. Поэтому здесь применяется следующее соотношение для базы сложного сигнала:

BSS=TS*∆FSS>>1, (2.26)

где ∆FSS – ширина спектра сложного сигнала.

Иногда говорят, что у простых сигналов ∆FS = 1/ TS является спектром сообщения. У сложных сигналов спектр сигналов расширяется в ∆FSS / ∆FS раз. При этом получается избыточность в спектре сигнала, которая определяет полезные свойства сложных сигналов. Если в системе связи со сложными сигналами увеличить скорость передачи информации, чтобы получить длительность сложного сигнала TS = 1/ ∆FSS , то образуется опять простой сигнал и узкополосная система связи. Полезные свойства системы связи исчезают.

Способы расширения спектра сигнала

Рассмотренные выше дискретные и цифровые сигналы – это сигналы временным разделением.

Ознакомимся с широкополосными цифровыми сигналами и с методами многостанционного доступа с кодовым (по форме) разделением каналов.

Вначале широкополосные сигналы применялись в военной и в спутниковой связи.из-за их полезных свойств. Здесь использовались их высокая защищенность от помех и скрытность Система связи с широкополосными сигналами может работать, когда невозможен энергетический перехват сигнала, а подслушивание без наличия образца сигнала и без специальной аппаратуры невозможно и при принятом сигнале.

Использовать отрезки белого теплового шума в качестве переносчика информации и метод широкополосной передачи предложил Шеннон. Он ввел понятие пропускной способности канала связи. Показал связь между возможностью безошибочной передачей информации с заданным отношением и полосой частот, занимаемой сигналом.

Первой системой связи со сложными сигналами из отрезков белого теплового шума была предложена Костасом. В Советском Союзе применять широкополосные сигналы, когда реализуется метод многостанционного доступа с кодовым разделением каналов, предложил Л. Е. Варакин.

Для временного представления любого варианта сложного сигнала можно записать соотношение:

где UI (t) и (t) – огибающая и начальная фазы, которые являются медленно меняющимиcя

Функциями по сравнению с cosω 0 t; - несущая частота.

При частотном представлении сигнала его обобщенная спектральная форма имеет вид

, (2.28)

где - координатные функции; - коэффициенты разложения.

Координатные функции должны удовлетворять условию ортогональности

, (2.29)

а коэффициенты разложения

(2.30)

Для параллельных сложных сигналов в качестве координатных функций вначале использовали тригонометрические функции кратных частот

, (2.31)

когда каждый i-й вариант сложного сигнала имеет вид

Z i (t) = t . (2.32)

Тогда, приняв

A ki = и = - arktg(β ki / ki), (2.33)

Ki , βki – коэффициенты разложения в тригонометрический ряд Фурье i-го сигнала;

i = 1,2,3,…,m ; m – основание кода, получаем

Z i (t) = t . (2.34)

Здесь составляющие сигнала занимают частоты от ki1 /2π = ki1 /TS до ki2 /2π = ki2 /TS; ki1 = min {ki1} и ki2 = max {ki2}; ki1 и ki2 – номера наименьшей и наибольшей гармонических составляющих, которые существенно влияют на формирование i-го варианта сигнала; Ni = ki2 - ki1 + 1 - число гармонических составляющих сложного i-го сигнала.

Полоса частот, занимаемая сигналом

∆FSS = (ki2 - ki1 + 1)ω 0 / 2π = (ki2 - ki1 + 1)/ TS . (2.35)

В ней сосредоточена основная часть энергетического спектра сигнала.

Из соотношения (35) следует, что база этого сигнала

BSS = TS ∙ ∆FSS = (ki2 - ki1 + 1) = Ni , (2.36)

равна числу гармонических составляющих сигнала Ni, которые формирует i-й вариант сигнала

Рисунок 2.17

б)

Рисунок 2.18 Схема расширения спектра сигнала с графиком периодической последовательности

С 1996-1997 годов в коммерческих целях компания Qualcomm начала применять для формирования параллельных сложных сигналов на основе (28) подмножества {φ k (t)} полных ортогонализированных на интервале функций Уолша. При этом реализуется метод многостанционного доступа с кодовым разделением каналов – стандарт CDMA (Code Division Multiple Access)

Рисунок 2.19 Схема корреляционного приемника

Полезные свойства широкополосных (составных) сигналов

Рисунок 2.20

При связи с подвижными станциями (ПС) проявляется многолучевое (многопутевое) распространение сигнала. Поэтому возможна интерференция сигнала, которая приводит к появлению в пространственном распределению электромагнитного поля глубоких провалов (замираний сигналов). Так в городских условиях в точке приема может быть только переотраженные сигналы от высотных зданий, холмов и т.д., если отсутствует прямая видимость. Поэтому два сигнала с частотой 937,5 МГц (l = 32см), пришедшие со сдвигом во времени на 0,5 нс при разнице в пути 16см, складываются в противофазе.

Уровень сигнала на входе приемника изменяется и от проходящего мимо станции транспорта.

Узкополосные системы связи не могут работать в условиях многолучевости. Так если на входе такой системы будет три луча сигнала одной посылки Si(t) –Si1(t), Si2(t), Si3(t), которые перекрываются во времени за счет разницы в длине пути прохождения, то их разделить на выходе полосового фильтра (Yi1(t), Yi2(t), Yi3(t)) невозможно.

Системы связи со сложными сигналами противостоят многолучевому характеру распространения радиоволн. Так, выбирая полосу ∆FSS такой, чтобы длительность свернутого импульса на выходе корреляционного детектора или согласованного фильтра была меньше времени запаздывания соседних лучей, можно принять один луч или, обеспечив соответствующие задержки импульсов (Gi(t)), сложить их энергию, что увеличит соотношение сигал/шум. Американская система связи Rake подобно граблям собирала принимаемые лучи, отраженного от Луны сигнала и суммировали их.

Принцип накопления сигнала позволяет значительно улучшить помехоустойчивость и другие свойства сигнала. Представление о накоплении сигнала дает простое повторение сигнала.

Первым элементом для этой цели использовалась частотно-избирательная система (фильтр).

Корреляционный анализ позволяет определить статистическую связь (зависимость) между принятым сигналом и эталонным сигналом, находящимся на приемной стороне. Понятие о корреляционной функции ввел Тейлор в 1920г. Корреляционная функция – это статистическое среднее значение второго порядка по времени, или спектральное среднее значение, или вероятностное среднее значение.

Если временные функции (непрерывные последовательности) x(t) и y(t) имеют средние арифметические значения

С временным разделением каналов;

С кодовым разделением каналов.

Периодическая функция имеет вид:

f(t) = f(t+kT), (2.40)

где T-период, k-любое целое число (k= , 2, …). Периодичность существует на всей оси времени (- < t <+ ). При этом на любом отрезке времени равном T будет полное описа­ние сигнала.

На рис.2.10,а,б,в изображен периодический гармонический сигнал u1(t) и его спектр амплитуд и фаз.

На рис.2.11,а,б,в изображены графики периодического сигнала u2(t) - последовательности прямоугольных импульсов и его спектр амплитуд и фаз.

Итак, любые сигналы можно на определенном промежутке времени представить в виде ряда Фурье. Тогда разделение сигналов будем представлять через параметры сигналов, т. е. через амплитуды, частоты, и фазовые сдвиги:

а) сигналы, ряды которых с произвольными амплитудами, не перекрывающими частотами и произвольными фазами разделяются по частоте;

б) сигналы, ряды которых с произвольными амплитудами, перекрываются по частоте, но сдвинутыми по фазе между соответствующими составляющими рядов разделяются по фазе (фазовый сдвиг здесь пропорционален частоте);

Высокая емкость систем связи с составными сигналами будет показана ниже.

в) сигналы, ряды которых с произвольными амплитудами, с составляющими перекрывающимися по частоте (частоты могут совпадать) и произвольными фазами разделяются по форме.

Разделение по форме – это кодовое разделение, когда на передающей и приемной сторонах имеются специально созданные из простых сигналов сложные сигналы (образцы).

При приеме сложный сигнал вначале подвержен корреляционной обработке, а затем

идет обработка простого сигнала.

Разделение частотного ресурса при множественном доступе

В настоящее время сигналы могут передаваться в любых средах (в окружающем пространстве, в проводе, в волоконно-оптическом кабеле и др.). Для повышения эффективности частотного спектра, а за одно и линии передачи образуют групповые каналы для передачи сигналов по одной линии связи. На приемной стороне происходит обратный процесс – разделение каналов. Рассмотрим используемые способы разделения каналов:

Рисунок 2.21 Частотное разделение каналов (Frequency Division Multiple Access FDMA)

Рисунок 2.22 Временное разделение каналов (Time Division Multiple Access TDMA).

Рисунок 2.23 Кодовое разделение каналов (Code Division Multiple Access CDMA)

Шифрование в wi-fi сетях

Шифрованию данных в беспроводных сетях уделяется так много внимания из-за самого характера подобных сетей. Данные передаются беспроводным способом, используя радиоволны, причем в общем случае используются всенаправленные антенны. Таким образом, данные слышат все – не только тот, кому они предназначены, но и сосед, живущий за стенкой или «интересующийся», остановившийся с ноутбуком под окном. Конечно, расстояния, на которых работают беспроводные сети (без усилителей или направленных антенн), невелики – около 100 метров в идеальных условиях. Стены, деревья и другие препятствия сильно гасят сигнал, но это все равно не решает проблему.

Изначально для защиты использовался лишь SSID (имя сети). Но, вообще говоря, именно защитой такой способ можно называть с большой натяжкой – SSID передается в открытом виде и никто не мешает злоумышленнику его подслушать, а потом подставить в своих настройках нужный. Не говоря о том, что (это касается точек доступа) может быть включен широковещательный режим для SSID, т.е. он будет принудительно рассылаться в эфир для всех слушающих.

Поэтому возникла потребность именно в шифровании данных. Первым таким стандартом стал WEP – Wired Equivalent Privacy. Шифрование осуществляется с помощью 40 или 104-битного ключа (поточное шифрование с использованием алгоритма RC4 на статическом ключе). А сам ключ представляет собой набор ASCII-символов длиной 5 (для 40-битного) или 13 (для 104-битного ключа) символов. Набор этих символов переводится в последовательность шестнадцатеричных цифр, которые и являются ключом. Драйвера многих производителей позволяют вводить вместо набора ASCII-символов напрямую шестнадцатеричные значения (той же длины). Обращаю внимание, что алгоритмы перевода из ASCII-последовательности символов в шестнадцатеричные значения ключа могут различаться у разных производителей. Поэтому, если в сети используется разнородное беспроводное оборудование и никак не удается настройка WEP шифрования с использованием ключа-ASCII-фразы, - попробуйте ввести вместо нее ключ в шестнадцатеричном представлении.

А как же заявления производителей о поддержке 64 и 128-битного шифрования, спросите вы? Все правильно, тут свою роль играет маркетинг – 64 больше 40, а 128 – 104. Реально шифрование данных происходит с использованием ключа длиной 40 или 104. Но кроме ASCII-фразы (статической составляющей ключа) есть еще такое понятие, как Initialization Vector – IV – вектор инициализации. Он служит для рандомизации оставшейся части ключа. Вектор выбирается случайным образом и динамически меняется во время работы. В принципе, это разумное решение, так как позволяет ввести случайную составляющую в ключ. Длина вектора равна 24 битам, поэтому общая длина ключа в результате получается равной 64 (40+24) или 128 (104+24) бит.

Все бы хорошо, но используемый алгоритм шифрования (RC4) в настоящее время не является особенно стойким – при большом желании, за относительно небольшое время можно подобрать ключ перебором. Но все же главная уязвимость WEP связана как раз с вектором инициализации. Длина IV составляет всего 24 бита. Это дает нам примерно 16 миллионов комбинаций – 16 миллионов различных векторов. Хотя цифра «16 миллионов» звучит довольно внушительно, но в мире все относительно. В реальной работе все возможные варианты ключей будут использованы за промежуток от десяти минут до нескольких часов (для 40-битного ключа). После этого вектора начнут повторяться. Злоумышленнику стоит лишь набрать достаточное количество пакетов, просто прослушав трафик беспроводной сети, и найти эти повторы. После этого подбор статической с

Цель рассказа показать в чем суть понятия "сигнал", какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это "такая штука, с помощью которой можно что-нибудь сообщить". Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово "сигнал":

В природе существует огромное множество сигналов. Да по сути что угодно может быть сигналом: оставленная на столе записка, какой-нибудь звук -- могут служить сигналом к началу определённого действия.

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

В некотором смысле электрический сигнал -- это график, отражающий изменение напряжения или тока с течением времени. Что по-русски означает: если взять карандаш и по оси Х отметить время, а по Y напряжение или ток, и отметить точками соответствующие значения напряжения в конкретные моменты времени, то итоговое изображение будет показывать форму сигнала:

Электрических сигналов очень много, но их можно разбить на две большие группы:

  • Однонаправленные
  • Двунаправленные

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то "туда", то "сюда".

Все сигналы, независимо от типа, обладают следующими характеристиками:

  • Период -- промежуток времени, через который сигнал начинает повторять себя. Обозначается чаще всего T
  • Частота -- обозначает сколько раз сигнал повториться за 1 секунду. Измеряется в герцах. К примеру 1Гц = 1 повторение в секунду. Частота является обратным значением периода ( ƒ = 1/T )
  • Амплитуда -- измеряется в вольтах или амперах (в зависимости от того какой сигнал: ток или напряжение). Амплитуда обозначает "силу" сигнала. Как сильно отклоняется график сигнала от оси Х.

Виды сигналов

Синусоида


Думаю, что представлять функцию, чей график на картинке выше нет смысла - это хорошо тебе известная sin(x). Её период равен 360 o или 2pi радиан (2pi радиан =360 o).

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:


Сигналы, которые по форме напоминают прямоугольники, так и называют "прямоугольные сигналы". Их условно можно разделить на просто прямоугольне сигналы и меандры. Меандр - это прямоугольный сигнал, у которого длительность импульса и паузы равны. А если сложить длительность паузы и импульса, то получим период меандра.

Обычный прямоугольный сигнал отличается от меандра тем, что имеет разную длительность импульса и паузы (отсутствие импульса). Смотри картинку ниже -- она скажет лучше тысячи слов.


Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Таким образом меандр - это прямоугольный сигнал со скважностью равной 2. Так как у него период в два раза больше длительности импульса.

S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса.

Кстати, на графиках выше показаны идеальные прямоугольные сигналы. В жизни они выглядят слегка иначе, так как ни в одном устройстве сигнал не может измениться абсолютно мгновенно от 0 до какого-то значения и обратно спуститься до нуля.

Если подняться на гору, а затем сразу спуститься и записать изменение высоты нашего положения на графике, то получим треугольный сигнал. Груое сравнение, но правдивое. В треугольный сигналах напряжение (ток) сначала возрастает, а затем тут же начинает уменьшаться. И для классического треугольного сигнала время возрастания равно времени убывания (и равно половине периода).

Если же у такого сигнала время возрастания меньше или больше времени убывания, то такие сигналы уже называют пилообразными. И о них ниже.


Пилообразный сигнал

Как я уже писал выше, несимметричный треугольный сигнал называется пилообразным. Все эти названи условны и нужны просто для удобства.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

1. Основные понятия и определения. Определение радиоэлектроники. Определение радиотехники. Понятие сигнала. Классификационный анализ сигналов. Классификационный анализ радиотехнических цепей. Классификационный анализ радиоэлектронных систем.

Современная радиоэлектроника – это обобщенное название ряда областей науки и техники, связанных с передачей и преобразованием информации на основе использования и преобразования электромагнитных колебанийи волн радиочастотного диапазона; основными из этих областей являются:

радиотехника, радиофизика и электроника.

Основная задача радиотехники состоит в передаче информации на расстояние с помощью электромагнитных колебаний. В более широком смысле современная радиотехника – область науки и техники, связанная с генерацией, усилением, преобразованием, обработкой, хранением, передачей и приемом электромагнитных колебаний радиочастотного диапазона, используемых для передачи информации на расстояние. Как следует из этого, радиотехника и радиоэлектроника тесно связаны и часто эти термины заменяют друг друга.

Науку, занимающуюся изучением физических основ радиотехники, называют радиофизикой.

1. Понятие сигнала.

Сигналом (от лат. signum - знак) называется физический процесс или явление, несущее сообщение о каком-либо событии, состоянии объекта, либо передающее команды управления, оповещения и т.д. Таким образом, сигнал является материальным носителем сообщения. Таким носителем может служить любой физический процесс (свет, электрическое поле, звуковые колебания и т.п.). В радиоэлектронике изучаются и используются в основном электрические сигналы. Сигналы как физические процессы наблюдаются с помощью различных приборов и устройств (осциллографом, вольтметров, приемников). Любая модель отражает ограниченное число наиболее существенных признаков реального физического сигнала. Несущественные признаки сигнала игнорируются для упрощения математического описания сигналов. Общим требованием к математической модели является максимальное приближение к реальному процессу при минимальной сложности модели. Функции, описывающие сигналы могут принимать вещественные и комплексные значения, поэтому часто говорят о вещественных и комплексных моделях сигналов.

Классификация сигналов. По возм-ти предсказания мгн. значений сигнала в любой момент времени разл-ют:

Детерминированные сигналы, т.е. такие сигналы, для которых мгновенные значения для любого момента времени известны и предсказуемы с вероятностью равной единице;

Случайные сигналы, т.е. такие сигналы, значение которых в любой момент времени невозможно предсказать с вероятностью равной единице.

Все сигналы, несущие информацию являются случайными, поскольку полностью детерминированный сигнал (известный) информации не содержит.

Простейшими примерами детерминированного и случайного сигналов являются напряжения сети и напряжения шума соответственно (см. рис.2.1).

В свою очередь случайные и детерминированные сигналы могут подразделяться на непрерывные или аналоговые сигналы и дискретные сигналы, имеющие несколько разновидностей. Если сигнал можно измерять (наблюдать) в любой момент времени, то его называют аналоговым. Такой сигнал существует в любой момент времени. Дискретные сигналы могут наблюдаться и измеряться в дискретные (отдельные) ограниченные по длительности к моменту появления отрезки времени. К дискретным сигналам относятся импульсные сигналы.

На рисунке показаны два вида импульсов. Видеоимпульс и радиоимпульс. При формировании радиоимпульсов видеоимпульс используется как управляющий (модулирующий) сигнал и в этом случае между ними существует аналитическая связь:

При этом называется огибающей радиоимпульса, а функция- его заполнением.

Импульсы принято характеризовать амплитудой A, длительностью , длительностью фронтаи срезаи при необходимости частотойили периодомповторения.

Импульсные сигналы могут быть самых различных видов. В частности различают импульсные сигналы называемые дискретными (см. рис.2.3).

Эта разновидность сигналов может быть представлена математической моделью в виде счетного множества значений функции - где i = 1, 2, 3, ...., k, отсчитываемых в дискретные моменты времени. Шаг дискретизации сигнала по времени и по амплитуде обычно величина постоянная для данного типа сигнала, т.е. минимальное приращение сигнала

Каждое из значений конечного множества S можно представить в двоичной системе исчисления в виде числа: - 10101;- 11001;- 10111. Такие сигналы называют цифровыми.

Классификация радиосистем и решаемых ими задач

По выполняемым функциям информационные радиосистемы могут быть разделены на следующие классы:

    передачи информации (радиосвязь, радиовещание, телевидение);

    извлечения информации (радиолокация, радионавигация, радиоастрономия, радиоизмерения и т.д.);

    разрушения информации (радиопротиводействие);

    управления различными процессами и объектами (беспилотные летательные аппараты и др.);

    комбинированные.

В системе передачи информации имеется источник информации и ее получатель. В радиосистеме извлечения информации информация как таковая не передается, а извлекается или из собственных сигналов, излученных в направлении на исследуемый объект и отраженных от него, или из сигналов других радиосистем, или из собственного радиоизлучения различных объектов.

Радиосистемы разрушения информации служат для создания помех нормальной работе конкурирующей радиосистемы путем излучения мешающего сигнала, или приема, умышленного искажения и переизлучения сигнала.

В радиосистемах управления решается задача выполнения объектом некоторой команды, посылаемой с пульта управления. Командные сигналы являются информацией для следящего устройства, выполняющего команду.

Основными задачами, решаемыми радиосистемой при приеме информации, являются:

    Обнаружение сигнала на фоне помехи.

    Различение сигналов на фоне помехи.

    Оценка параметров сигнала.

    Воспроизведение сообщения.

Наиболее просто решается первая задача, в которой с заданными вероятностями правильного обнаружения и ложной тревоги следует принять решение о наличии известного сигнала в принятом сообщении. Чем выше уровень задачи, тем сложнее становится схема принимающего устройства.

2. Энергия, мощность, ортогональность и когерентность сигналов. Взаимная энергия сигналов (интеграл похожести). Понятие нормы сигнала.

Практически с самого момента зарождения человеческие племена столкнулось с необходимостью не только накапливать информацию, но и обмениваться ею друг с другом. Однако если с ближними сделать это было не так уже и сложно (язык и письменность), то с теми, кто находился на дальних расстояниях, данный процесс вызывал некоторые проблемы.

Со временем они были решены с помощью изобретения сигнала. поначалу были довольно примитивными (дымовые, звуковые и т. п.), но постепенно человечество открывало новые законы природы, что способствовало изобретению новых способов для передачи информации. Давайте узнаем, какие виды сигналов бывают, а также рассмотрим, какими из них чаще всего пользуются в современном обществе.

Что называется сигналом

Под этим словом подразумевается закодированная одной системой информация, которая передается по специальному каналу и может быть декодирована другой системой.

Многие ученые полагают, что способность биологических организмов или даже отдельных клеток взаимодействовать между собою (сигнализируя о наличии питательных веществ или опасности) стала основной движущей силой эволюции.

В качестве сигнала может выступать каждый физический процесс, параметры которого адаптируются под тип передаваемых данных. К примеру, в системе телефонной связи передатчик преобразует слова говорящего абонента в электрический сигнал напряжения, который по проводам передается к принимающему аппарату, возле коего находится слушающий человек.

Сигнал и сообщение

Эти два понятия весьма близки по значению - они содержат в себе определенные данные, передающиеся от отправителя к получателю. Однако между ними есть ощутимое отличие.

Для реализации поставленной цели сообщение обязательно должно быть принято адресатом. То есть его жизненный цикл состоит из трех этапов: кодирование информации - передача - декодирование сообщения.

В случае с сигналом его принятие не является обязательным условием его существования. То есть зашифрованную в нем информацию возможно декодировать, но будет ли это сделано кем-то - неизвестно.

Классификация по разным критериям сигналов: основные виды

В природе существует немало разновидностей сигналов, обладающих разными особенностями. В связи с этим для их классификации используют различные критерии этих явлений. Таким образом, выделяют три категории:

  • По способу подачи (регулярный/нерегулярный).
  • По типу физической природы.
  • По типу функции, описывающей параметры.

Сигналы по типу физической природы

В зависимости от способа образования, виды сигналов бывают следующими.

  • Электрические (носитель информации - изменяющиеся во времени ток или напряжение в электрической цепи).
  • Магнитные.
  • Электромагнитные.
  • Тепловые.
  • Сигналы ионизирующих излучений.
  • Оптические/световые.
  • Акустические (звуковые).

Виды сигналов последние два также являются простейшими примерами коммуникационных технических операций, цель которых - оповещение об особенностях сложившейся ситуации.

Чаще всего их используют для предупреждения об опасности или неисправностях системы.

Нередко звуковые и оптические разновидности используются в качестве координирующих для налаженной работы автоматизированного оборудования. Так некоторые виды сигналов управления (команды) являются стимулирующими для системы, чтобы начать действовать.

К примеру, в противопожарных сигнализациях при обнаружении следов дыма датчиками они издают пронзительный звук. Тот, в свою очередь, воспринимается системой как управляющий сигнал для тушения очага возгорания.

Еще одним примером того, как сигнал (виды сигналов по типу физической природы перечислены выше) активизирует работу системы в случае опасности, является терморегуляция человеческого организма. Так, если вследствие различных факторов температура тела повышается, клетки «информируют» мозг об этом, и он включает «систему охлаждения организма», более известную всем как потоотделение.

По типу функции

По данному параметру выделяется разные категории.

  • Аналоговые (непрерывные).
  • Квантовые.
  • Дискретные (импульсные).
  • Цифровой сигнал.

Все эти виды сигналов - электрические. Обусловлено это тем, что их не только легче обрабатывать, но и они без труда передаются на длинные дистанции.

Что такое аналоговый сигнал и его виды

Такое название носят сигналы естественного происхождения, изменяющиеся непрерывно во времени (континуальные) и способные принимать разные значения на некотором интервале.

Благодаря своим свойствам, они прекрасно подходят для передачи данных в телефонной связи, радиовещании, а также телевидении.

Фактически, все остальные виды сигналов (цифровые, квантовые и дискретные) по своей природе - это преобразованные аналоговые.

В зависимости от непрерывных пространств и соответствующих физических величин, выделяются разные виды аналоговых сигналов.

  • Прямая.
  • Отрезок.
  • Окружность.
  • Пространства, характеризующиеся многомерностью.

Квантованный сигнал

Как уже было сказано в прошлом пункте, это все тот же аналоговый вид, однако его отличие состоит в том, что он подвергся квантованию. При этом вся область значений его поддалась разбивке на уровни. Их количество представляется в числах заданной разрядности.

Обычно данный процесс на практике используется при сжатии звуковых или оптических сигналов. Чем больше уровней квантования, тем более точной становится трансформация аналогового вида в квантовый.

Рассматриваемая разновидность также относится к тем, которые возникли искусственным путем.

Во многих классификациях видов сигналов сигнал этот не выделяется. Однако он существует.

Дискретный вид

Этот сигнал также относится к искусственным и имеет конечное число уровней (значений). Как правило, их два или три.

На практике различие дискретного и аналогового способов передачи сигналов можно проиллюстрировать, сравнив запись звука на виниловой пластинке и компакт-диске. На первой информация подана в виде непрерывной звуковой дорожки. А вот на втором - в виде выжженных лазером точек с разной отражающей способностью.

Этот вид передачи данных возникает путем преобразования непрерывного аналогового сигнала в набор дискретных значений в форме двоичных кодов.

Упомянутый процесс именуется дискретизацией. В зависимости от количества символов в кодовых комбинациях (равномерное/неравномерное) его делят на два вида.

Цифровые сигналы

Сегодня этот способ передачи информации настойчиво вытесняет аналоговый. Как и два предыдущих, он также является искусственным. На практике он представлен в виде последовательности цифровых значений.

В отличие от аналогового, рассматриваемый намного быстрее и качественнее передает данные, параллельно очищая их от шумовых помех. Одновременно в этом заключается и слабость цифрового сигнала (виды сигналов остальные - в предыдущих трех пунктах). Дело в том, что фильтрованная таким способом информация теряет «зашумленные» частицы с данными.

На практике это означает, что из передаваемого изображения исчезают целые куски. А если речь идет о звуке - слова или даже целые предложения.

Фактически, любой аналоговый сигнал может быть модулирован в цифровой. Для этого он подвергается одновременно двум процессам: дискретизации и квантованию. Являясь отдельным способом передачи информации, цифровой сигнал не делится на виды.

Его популярность способствует тому, что в последние годы телевизоры нового поколения создаются специально для цифрового, а не аналогового способа передачи изображения и звука. Однако их можно подключать к обычным телевизионным кабелям с помощью адаптеров.

Модуляция сигналов

Все вышеперечисленные способы передачи данных связаны с таким явлением, как модуляция (для цифровых сигналов - манипуляция). Зачем она нужна?

Как известно, электромагнитные волны (с помощью которых переносятся разные виды сигналов) склонны к затуханию, а это существенно уменьшает дальность их передачи. Чтобы этого не произошло, низкочастотные колебания переносятся в область длинных высокочастотных волн. Это явление и называется модуляцией (манипуляцией).

Помимо увеличения расстояния передачи данных, благодаря ей повышается помехоустойчивость сигналов. А также появляется возможность одновременно организовывать сразу несколько независимых каналов передачи информации.

Сам процесс выглядит следующим образом. В прибор, именуемый модулятором, поступают одновременно два сигнала: низкочастотный (несет определенную информацию) и высокочастотный (безинформационный, зато способен передаваться на длинные дистанции). В этом устройстве они преобразуются в один, который одновременно совмещает в себе достоинства их обоих.

Виды выходных сигналов зависят от измененного параметра входного несущего высокочастотного колебания.

Если оно гармоническое - такой процесс модуляции именуется аналоговым.

Если периодическое - импульсным.

Если несущим сигналом является просто постоянный ток - такая разновидность называется шумоподобной.

Первых два вида модуляции сигналов, в свою очередь, делятся на подвиды.

Аналоговая модуляция бывает такой.

  • Амплитудная (АМ) - изменение амплитуды несущего сигнала.
  • Фазовая (ФМ) - меняется фаза.
  • Частотная - влиянию подвергается только частота.

Виды модуляции сигналов импульсных (дискретных).

  • Амплитудно-импульсная (АИМ).
  • Частотно-импульсная (ЧИМ).
  • Широтно-испульсная (ШИМ).
  • Фазо-импульсная (ФИМ).

Рассмотрев, какие существуют способы передачи данных, можно сделать вывод, что, независимо от их вида, все они играют важную роль в жизни человека, помогая ему всесторонне развиваться и защищая от возможных опасностей.

Что касается аналогового и цифрового сигналов (с помощью которых передается информация в современном мире) то, вероятнее всего, в ближайшие двадцать лет в развитых странах первый будет практически полностью вытеснен вторым.